Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2010, Volume 13, Number 4, Pages 467–475 (Mi sjvm420)  

This article is cited in 8 scientific papers (total in 8 papers)

Construction of Hamiltonian cycles by recurrent neural networks in graphs of distributed computer systems

M. S. Tarkov

Institute of Semiconductor Physics of SB RAS, Novosibirsk
Full-text PDF (213 kB) Citations (8)
References:
Abstract: An algorithm based on a recurrent neural Wang's network and the WTA (“Winner takes all”) principle is applied to the construction of Hamiltonian cycles in graphs of distributed computer systems (CSs). The algorithm is used for: 1) regular graphs (2D- and 3D-tori, and hypercubes) of distributed CSs and 2) 2D-tori disturbed by removing an arbitrary edge. The neural network parameters for the construction of Hamiltonian cycles and sub-optimal cycles with a length close to that of Hamiltonian ones are determined. Our experiments show that the iteration method (Jacobi, Gauss-Seidel, or SOR) used for solving the system of differential equations describing a neural network strongly affects the process of cycle construction and depends upon the number of torus nodes.
Key words: recurrent neural networks, distributed computer systems, parallel algorithms, Hamiltonian cycle, graphs, torus, hypercube, Jacobi method, Gauss-Seidel, SOR.
Received: 11.02.2010
Revised: 09.03.2010
English version:
Numerical Analysis and Applications, 2010, Volume 3, Issue 4, Pages 381–388
DOI: https://doi.org/10.1134/S1995423910040099
Bibliographic databases:
Document Type: Article
UDC: 004.032.26(06)
Language: Russian
Citation: M. S. Tarkov, “Construction of Hamiltonian cycles by recurrent neural networks in graphs of distributed computer systems”, Sib. Zh. Vychisl. Mat., 13:4 (2010), 467–475; Num. Anal. Appl., 3:4 (2010), 381–388
Citation in format AMSBIB
\Bibitem{Tar10}
\by M.~S.~Tarkov
\paper Construction of Hamiltonian cycles by recurrent neural networks in graphs of distributed computer systems
\jour Sib. Zh. Vychisl. Mat.
\yr 2010
\vol 13
\issue 4
\pages 467--475
\mathnet{http://mi.mathnet.ru/sjvm420}
\transl
\jour Num. Anal. Appl.
\yr 2010
\vol 3
\issue 4
\pages 381--388
\crossref{https://doi.org/10.1134/S1995423910040099}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-78650386299}
Linking options:
  • https://www.mathnet.ru/eng/sjvm420
  • https://www.mathnet.ru/eng/sjvm/v13/i4/p467
  • This publication is cited in the following 8 articles:
    1. M. S. Tarkov, “Solving the traveling salesman problem using a recurrent neural network”, Num. Anal. Appl., 8:3 (2015), 275–283  mathnet  crossref  crossref  mathscinet  elib
    2. Weiting Gao, Hui Li, “A Blind Adaptive SOR/JGS Iterative Kalman MUD Algorithm for Multiple Access Communication System”, JCM, 9:3 (2014), 226  crossref
    3. M. S. Tarkov, “Ob effektivnosti postroeniya gamiltonovykh tsiklov v grafakh raspredelennykh vychislitelnykh sistem rekurrentnymi neironnymi setyami”, UBS, 43 (2013), 157–171  mathnet
    4. Tarkov M.S., “On the Efficient Construction of Hamiltonian Cycles in Distributed Computer Systems by Recurrent Neural Networks”, 2013 International Siberian Conference on Control and Communications (Sibcon), ed. Stukach O., IEEE, 2013  isi
    5. M. S. Tarkov, “Mapping parallel programs onto multicore computer systems by Hopfield networks”, Opt. Mem. Neural Networks, 22:3 (2013), 148  crossref
    6. Mikhail S. Tarkov, 2013 International Siberian Conference on Control and Communications (SIBCON), 2013, 1  crossref
    7. Tarkov M.S., “On Mapping Graphs of Parallel Programs Onto Graphs of Distributed Computer Systems by Recurrent Neural Networks”, Parallel Computing Technologies, Lecture Notes in Computer Science, 6873, ed. Malyshkin V., Springer-Verlag Berlin, 2011, 358–367  crossref  isi  scopus
    8. M. S. Tarkov, A. V. Rzhanov's, “Mapping graphs Of parallel programs onto graphs of distributed computer systems by recurrent neural networks”, Opt. Mem. Neural Networks, 20:2 (2011), 107  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:504
    Full-text PDF :182
    References:50
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025