Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2008, Volume 11, Number 2, Pages 167–186 (Mi sjvm41)  

This article is cited in 6 scientific papers (total in 6 papers)

On elimination of accuracy saturation of regularizing algorithms

A. S. Leonov

Moscow Engineering Physics Institute
References:
Abstract: A general approach to modification of well-known methods for the solution of linear ill-posed problems is proposed. The approach enables us to exclude a possible “saturation of accuracy” of methods on classes of sourcewise representable solutions. As a result, the modified methods possess the optimal order of accuracy on each of these classes. Numerical examples for the solution of 1D and 2D inverse problems are presented.
Key words: ill-posed problems, accuracy saturation, soursewise represented solutions.
Received: 27.02.2007
English version:
Numerical Analysis and Applications, 2008, Volume 1, Issue 2, Pages 135–150
DOI: https://doi.org/10.1134/S1995423908020055
UDC: 519.6
Language: Russian
Citation: A. S. Leonov, “On elimination of accuracy saturation of regularizing algorithms”, Sib. Zh. Vychisl. Mat., 11:2 (2008), 167–186; Num. Anal. Appl., 1:2 (2008), 135–150
Citation in format AMSBIB
\Bibitem{Leo08}
\by A.~S.~Leonov
\paper On elimination of accuracy saturation of regularizing algorithms
\jour Sib. Zh. Vychisl. Mat.
\yr 2008
\vol 11
\issue 2
\pages 167--186
\mathnet{http://mi.mathnet.ru/sjvm41}
\transl
\jour Num. Anal. Appl.
\yr 2008
\vol 1
\issue 2
\pages 135--150
\crossref{https://doi.org/10.1134/S1995423908020055}
Linking options:
  • https://www.mathnet.ru/eng/sjvm41
  • https://www.mathnet.ru/eng/sjvm/v11/i2/p167
  • This publication is cited in the following 6 articles:
    1. A. S. Leonov, “Extra-optimal methods for solving ill-posed problems: survey of theory and examples”, Comput. Math. Math. Phys., 60:6 (2020), 960–986  mathnet  crossref  crossref  isi  elib
    2. Smirnova A., Bakushinsky A., DeCamp L., “on Application of Asymptotic Generalized Discrepancy Principle To the Analysis of Epidemiology Models”, Appl. Anal., 94:4 (2015), 672–693  crossref  mathscinet  zmath  isi  elib  scopus
    3. A. S. Leonov, “A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution”, Num. Anal. Appl., 5:1 (2012), 68–83  mathnet  crossref  elib
    4. Leonov A.S., “Extra-Optimal Methods for Solving Ill-Posed Problems”, J. Inverse Ill-Posed Probl., 20:5-6 (2012), 637–665  crossref  mathscinet  zmath  isi  elib  scopus
    5. Mazzieri G.L., Spies R.D., Temperini K.G., “On the Existence of Global Saturation for Spectral Regularization Methods with Optimal Qualification”, J. Inverse Ill-Posed Probl., 20:5-6 (2012), 765–789  crossref  mathscinet  zmath  isi  elib  scopus
    6. Leonov A.S., “Extraoptimal a posteriori estimates of the solution accuracy in the ill-posed problems of the continuation of potential geophysical fields”, Izvestiya Physics of the Solid Earth, 47:6 (2011), 531–540  crossref  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :126
    References:101
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025