Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2001, Volume 4, Number 4, Pages 353–360 (Mi sjvm408)  

Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits

S. K. Godunov

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: There exist classes of (in general) nonselfadjoint matrix operators whose eigenvalues of a spectral cluster are ill-conditioned. In applications, it is convenient to describe properties of such operators in terms of some criteria for spectral dichotomy. It is convenient to divide the spectrum by a series of plane curves depending on a single parameter. The graphical dependence of a criterion for dichotomy on this parameter is naturally regarded as spectral portrait.
Criteria for dichotomy are connected with Hermite forms. (Recall that Hermite forms appeared in 1856 in solving a similar problem studied by Hermite).
Received: 25.05.2001
Bibliographic databases:
Document Type: Article
UDC: 517.926.7+519.614.4
Language: English
Citation: S. K. Godunov, “Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits”, Sib. Zh. Vychisl. Mat., 4:4 (2001), 353–360
Citation in format AMSBIB
\Bibitem{God01}
\by S.~K.~Godunov
\paper Partition of the spectrum by Hermite forms and one-dimensional spectral matrix portraits
\jour Sib. Zh. Vychisl. Mat.
\yr 2001
\vol 4
\issue 4
\pages 353--360
\mathnet{http://mi.mathnet.ru/sjvm408}
\zmath{https://zbmath.org/?q=an:0996.65039}
Linking options:
  • https://www.mathnet.ru/eng/sjvm408
  • https://www.mathnet.ru/eng/sjvm/v4/i4/p353
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:330
    Full-text PDF :122
    References:61
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025