Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2008, Volume 11, Number 2, Pages 139–149 (Mi sjvm39)  

This article is cited in 12 scientific papers (total in 12 papers)

A correct flow chart for numerical solution to an inverse problem by optimization method

A. L. Karchevsky

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
References:
Abstract: In this paper, two flow charts for solving the same inverse problem by an optimization method are presented. On numerical examples it is shown that the first flow chat often used by researchers requires much more computer costs than the second one. This is because of the necessity of using a fine net and due to an increase in the number of minimization iterations of the residual functional for its decrease up to a certain value.
Key words: inverse problem, optimization method, residual functional.
Received: 25.03.2007
Revised: 05.06.2007
English version:
Numerical Analysis and Applications, 2008, Volume 1, Issue 2, Pages 114–122
DOI: https://doi.org/10.1134/S1995423908020031
UDC: 517.95
Language: Russian
Citation: A. L. Karchevsky, “A correct flow chart for numerical solution to an inverse problem by optimization method”, Sib. Zh. Vychisl. Mat., 11:2 (2008), 139–149; Num. Anal. Appl., 1:2 (2008), 114–122
Citation in format AMSBIB
\Bibitem{Kar08}
\by A.~L.~Karchevsky
\paper A~correct flow chart for numerical solution to an inverse problem by optimization method
\jour Sib. Zh. Vychisl. Mat.
\yr 2008
\vol 11
\issue 2
\pages 139--149
\mathnet{http://mi.mathnet.ru/sjvm39}
\transl
\jour Num. Anal. Appl.
\yr 2008
\vol 1
\issue 2
\pages 114--122
\crossref{https://doi.org/10.1134/S1995423908020031}
Linking options:
  • https://www.mathnet.ru/eng/sjvm39
  • https://www.mathnet.ru/eng/sjvm/v11/i2/p139
  • This publication is cited in the following 12 articles:
    1. Vagif Abdullayev, “On an inverse problem with high-order overdetermination conditions”, Journal of Inverse and Ill-posed Problems, 2025  crossref
    2. K. R. Aida-zade, V. M. Abdullayev, “Approach to Determining the Parameters of a Dynamic System Under Nonlocal High-Order Overdetermination Conditions”, Cybern Syst Anal, 2024  crossref
    3. K.R. Aida-zade, V.M. Abdullayev, “APPROACH TO DETERMINING THE PARAMETERS OF A DYNAMIC SYSTEM UNDER NONLOCAL HIGH-ORDER OVERDETERMINATION CONDITIONS”, KCA, 2024, 125  crossref
    4. E. B. Sibiryakov, “Coefficient inverse problem for the Helmholtz equation”, Russian Journal of geophysical technologies, 2023, no. 3, 77  crossref
    5. Gongsheng Li, Wenyi Liu, Xianzheng Jia, Zhiyuan Li, “Unique identification of fractional orders in the fractional mobile–immobile solute transport system”, Applied Mathematics in Science and Engineering, 31:1 (2023)  crossref
    6. V. I. Vasilev, A. M. Kardashevskii, V. V. Popov, “Iteratsionnoe reshenie retrospektivnoi obratnoi zadachi teploprovodnosti s neodnorodnymi granichnymi usloviyami Dirikhle”, Sib. zhurn. industr. matem., 25:4 (2022), 27–41  mathnet  crossref
    7. T. A. Zvonareva, O. I. Krivorot'ko, “Comparative analysis of gradient methods for source identification in a diffusion-logistic model”, Comput. Math. Math. Phys., 62:4 (2022), 674–684  mathnet  mathnet  crossref  crossref  scopus
    8. K. R. Aida-zade, Y. R. Ashrafova, “Control of effects in the right-hand sides of a large ODE system of a block structure and optimization of sources in unseparated boundary conditions”, Num. Anal. Appl., 14:3 (2021), 201–219  mathnet  crossref  crossref  isi
    9. A. V. Penenko, “Consistent numerical schemes for solving nonlinear inverse source problems with the gradient-type algorithms and the Newton–Kantorovich methods”, Num. Anal. Appl., 11:1 (2018), 73–88  mathnet  crossref  crossref  isi  elib
    10. Rysbaiuly B., Yunicheva N., Rysbayeva N., “An Iterative Method to Calculate the Thermal Characteristics of the Rock Mass With Inaccurate Initial Data”, Open Eng., 6:1 (2016), 627–636  crossref  isi
    11. A. V. Penenko, “Discrete-analytic schemes for solving an inverse coefficient heatconduction problem in a layered medium with gradient methods”, Num. Anal. Appl., 5:4 (2012), 326–341  mathnet  crossref  elib
    12. V. V. Vasin, V. N. Dubinin, V. G. Romanov, “Itogovyi nauchnyi otchet po mezhdistsiplinarnomu integratsionnomu proektu SO RAN: “Razrabotka teorii i vychislitelnoi tekhnologii resheniya obratnykh i ekstremalnykh zadach s prilozheniem v matematicheskoi fizike i gravimagnitorazvedke””, Sib. elektron. matem. izv., 5 (2008), 427–439  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:495
    Full-text PDF :134
    References:87
    First page:8
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025