Abstract:
In this paper, two flow charts for solving the same inverse problem by an optimization method are presented. On numerical examples it is shown that the first flow chat often used by researchers requires much more computer costs than the second one. This is because of the necessity of using a fine net and due to an increase in the number of minimization iterations of the residual functional for its decrease up to a certain value.
Citation:
A. L. Karchevsky, “A correct flow chart for numerical solution to an inverse problem by optimization method”, Sib. Zh. Vychisl. Mat., 11:2 (2008), 139–149; Num. Anal. Appl., 1:2 (2008), 114–122
\Bibitem{Kar08}
\by A.~L.~Karchevsky
\paper A~correct flow chart for numerical solution to an inverse problem by optimization method
\jour Sib. Zh. Vychisl. Mat.
\yr 2008
\vol 11
\issue 2
\pages 139--149
\mathnet{http://mi.mathnet.ru/sjvm39}
\transl
\jour Num. Anal. Appl.
\yr 2008
\vol 1
\issue 2
\pages 114--122
\crossref{https://doi.org/10.1134/S1995423908020031}
Linking options:
https://www.mathnet.ru/eng/sjvm39
https://www.mathnet.ru/eng/sjvm/v11/i2/p139
This publication is cited in the following 12 articles:
Vagif Abdullayev, “On an inverse problem with high-order overdetermination conditions”, Journal of Inverse and Ill-posed Problems, 2025
K. R. Aida-zade, V. M. Abdullayev, “Approach to Determining the Parameters of a Dynamic System Under Nonlocal High-Order Overdetermination Conditions”, Cybern Syst Anal, 2024
K.R. Aida-zade, V.M. Abdullayev, “APPROACH TO DETERMINING THE PARAMETERS OF A DYNAMIC SYSTEM UNDER NONLOCAL HIGH-ORDER OVERDETERMINATION CONDITIONS”, KCA, 2024, 125
E. B. Sibiryakov, “Coefficient inverse problem for the Helmholtz equation”, Russian Journal of geophysical technologies, 2023, no. 3, 77
Gongsheng Li, Wenyi Liu, Xianzheng Jia, Zhiyuan Li, “Unique identification of fractional orders in the fractional mobile–immobile solute transport system”, Applied Mathematics in Science and Engineering, 31:1 (2023)
V. I. Vasilev, A. M. Kardashevskii, V. V. Popov, “Iteratsionnoe reshenie retrospektivnoi obratnoi zadachi teploprovodnosti s neodnorodnymi granichnymi usloviyami Dirikhle”, Sib. zhurn. industr. matem., 25:4 (2022), 27–41
T. A. Zvonareva, O. I. Krivorot'ko, “Comparative analysis of gradient methods for source identification in a diffusion-logistic model”, Comput. Math. Math. Phys., 62:4 (2022), 674–684
K. R. Aida-zade, Y. R. Ashrafova, “Control of effects in the right-hand sides of a large ODE system of a block structure and optimization of sources in unseparated boundary conditions”, Num. Anal. Appl., 14:3 (2021), 201–219
A. V. Penenko, “Consistent numerical schemes for solving nonlinear inverse source problems with the gradient-type algorithms and the Newton–Kantorovich methods”, Num. Anal. Appl., 11:1 (2018), 73–88
Rysbaiuly B., Yunicheva N., Rysbayeva N., “An Iterative Method to Calculate the Thermal Characteristics of the Rock Mass With Inaccurate Initial Data”, Open Eng., 6:1 (2016), 627–636
A. V. Penenko, “Discrete-analytic schemes for solving an inverse coefficient heatconduction problem in a layered medium with gradient methods”, Num. Anal. Appl., 5:4 (2012), 326–341
V. V. Vasin, V. N. Dubinin, V. G. Romanov, “Itogovyi nauchnyi otchet po mezhdistsiplinarnomu integratsionnomu proektu SO RAN: “Razrabotka teorii i vychislitelnoi tekhnologii resheniya obratnykh i ekstremalnykh zadach s prilozheniem v matematicheskoi fizike i gravimagnitorazvedke””, Sib. elektron. matem. izv., 5 (2008), 427–439