Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 1999, Volume 2, Number 3, Pages 281–293 (Mi sjvm341)  

Curvature-based multistep quasi-Newton method for unconstrained optimization

I. A. R. Moghrabi, Samir A. Obeid

Natural Science Division, Lebanese American University, Beirut, Lebanon
References:
Abstract: Multi-step methods derived in [1–3] have proven to be serious contenders in practice by outperforming traditional quasi-Newton methods based on the linear Secant Equation. Minimum curvature methods that aim at tuning the interpolation process in the construction of the new Hessian approximation of the multi-step type are among the most successful so far [3]. In this work, we develop new methods of this type that derive from a general framework based on a parameterized nonlinear model. One of the main concerns of this paper is to conduct practical investigation and experimentation of the newly developed methods and we use the methods in [1–7] as a benchmark for the comparison. The results of the numerical experiments made indicate that these methods substantially improve the performance of quasi-Newton methods.
Received: 15.12.1998
Revised: 02.04.1999
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. A. R. Moghrabi, Samir A. Obeid, “Curvature-based multistep quasi-Newton method for unconstrained optimization”, Sib. Zh. Vychisl. Mat., 2:3 (1999), 281–293
Citation in format AMSBIB
\Bibitem{MogObe99}
\by I.~A.~R.~Moghrabi, Samir A.~Obeid
\paper Curvature-based multistep quasi-Newton method for unconstrained optimization
\jour Sib. Zh. Vychisl. Mat.
\yr 1999
\vol 2
\issue 3
\pages 281--293
\mathnet{http://mi.mathnet.ru/sjvm341}
\zmath{https://zbmath.org/?q=an:0935.65066}
Linking options:
  • https://www.mathnet.ru/eng/sjvm341
  • https://www.mathnet.ru/eng/sjvm/v2/i3/p281
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :82
    References:35
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025