Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2008, Volume 11, Number 1, Pages 69–81 (Mi sjvm34)  

Non-convex quadratic optimization on a parallelepiped

E. A. Kotel'nikov

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The approximating-combinatorial method for solving optimization problems is used for the search for a global maximum of a quadratic function on a parallelepiped. The approximating functions in this method are majorants of an object function. The majorants are constructed on subsets of parallelepiped of admissible solutions. The method is based on a diagonal or block-diagonal $LDL^T$-factorization of a matrix of an object function.
Key words: non-convex quadratic programming, non-convex optimization, branch and bound algorithm, factorization of symmetric matrix.
Received: 24.03.2007
Revised: 26.03.2007
English version:
Numerical Analysis and Applications, 2008, Volume 1, Issue 1, Pages 58–68
DOI: https://doi.org/10.1007/s12258-008-1006-8
UDC: 519.853
Language: Russian
Citation: E. A. Kotel'nikov, “Non-convex quadratic optimization on a parallelepiped”, Sib. Zh. Vychisl. Mat., 11:1 (2008), 69–81; Num. Anal. Appl., 1:1 (2008), 58–68
Citation in format AMSBIB
\Bibitem{Kot08}
\by E.~A.~Kotel'nikov
\paper Non-convex quadratic optimization on a~parallelepiped
\jour Sib. Zh. Vychisl. Mat.
\yr 2008
\vol 11
\issue 1
\pages 69--81
\mathnet{http://mi.mathnet.ru/sjvm34}
\transl
\jour Num. Anal. Appl.
\yr 2008
\vol 1
\issue 1
\pages 58--68
\crossref{https://doi.org/10.1007/s12258-008-1006-8}
Linking options:
  • https://www.mathnet.ru/eng/sjvm34
  • https://www.mathnet.ru/eng/sjvm/v11/i1/p69
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025