Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 1999, Volume 2, Number 3, Pages 257–271 (Mi sjvm339)  

This article is cited in 5 scientific papers (total in 5 papers)

Application of function of several variables with bounded variation to numerical solution of two-dimensional ill-posed problems

A. S. Leonov

Moscow Engineering Physics Institute (State University), Moskow
References:
Abstract: The problem of numerical piece-uniform regularization of two-dimensional ill-posed problems with bounded discontinuous solutions are under consideration. The functions of two variables with bounded variations of several kinds (total variation, variation of Arzela) are applied to solve the problem by use of regularizing algorithms. In finite-dimensional form, these algorithms are reduced to solution of mathematical programming mith non-smooth target functions or with non-smooth restrictions. After smooth approximation, the algorithms are effectively implemented numerically and ensure piece-uniform convergence of approximate solutions to exact solution to be found. The numerical experiments in problems of distored image reconstruction illustrate the influence of different kinds of variations on the quality of obtained solution.
Received: 01.02.1999
Bibliographic databases:
Document Type: Article
UDC: 519.6+517.988.68
Language: Russian
Citation: A. S. Leonov, “Application of function of several variables with bounded variation to numerical solution of two-dimensional ill-posed problems”, Sib. Zh. Vychisl. Mat., 2:3 (1999), 257–271
Citation in format AMSBIB
\Bibitem{Leo99}
\by A.~S.~Leonov
\paper Application of function of several variables with bounded variation to numerical solution of two-dimensional ill-posed problems
\jour Sib. Zh. Vychisl. Mat.
\yr 1999
\vol 2
\issue 3
\pages 257--271
\mathnet{http://mi.mathnet.ru/sjvm339}
\zmath{https://zbmath.org/?q=an:0935.65067}
Linking options:
  • https://www.mathnet.ru/eng/sjvm339
  • https://www.mathnet.ru/eng/sjvm/v2/i3/p257
  • This publication is cited in the following 5 articles:
    1. Vavilov S.A., Svetlov K.V., “Integral Identity For a Class of Ill-Posed Problems Generated By a Parabolic Equation”, J. Inverse Ill-Posed Probl., 24:5 (2016), 573–582  crossref  isi
    2. A. S. Leonov, “Higher-order total variations for functions of several variables and their application in the theory of ill-posed problems”, Proc. Steklov Inst. Math. (Suppl.), 280, suppl. 1 (2013), 119–133  mathnet  crossref  isi  elib
    3. Koshev N.A., Orlikovskii N.A., Rau E.I., Yagola A.G., “Reshenie obratnoi zadachi vosstanovleniya signala elektronnogo mikroskopa v rezhime otrazhennykh elektronov na mnozhestve funktsii ogranichennoi variatsii”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 12:1 (2011), 362–367  mathnet  elib
    4. Koptelova E.A., Shimanovskaya E.V., Artamonov B.P., Sazhin M.V., Yagola A.G., “Two-stage algorithm for reconstructing the images of the gravitational lens QSO 2237+0305”, Astronomy Reports, 48:10 (2004), 826–833  crossref  adsnasa  isi  scopus
    5. V. V. Vasin, T. I. Serezhnikova, “On an algorithm for solving the Fredholm–Stieltjes equation”, Russian Math. (Iz. VUZ), 45:4 (2001), 1–8  mathnet  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:631
    Full-text PDF :196
    References:61
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025