Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 1999, Volume 2, Number 1, Pages 37–46 (Mi sjvm322)  

An error estimation in $\Sigma\Pi$-approximation via statistical methods

K. I. Kutchinsky

Novosibirsk State University
References:
Abstract: This paper offers a statistical approach to obtain a numerical estimate of $\Sigma\Pi$-approximation algorithm efficiency on a fixed functional class. This approach consists of two steps. The first one is finding the distribution of $\Sigma\Pi$-approximation coefficients. The second one is the simulation of a random vector with obtained probability density and calculation the integer $s$ (number of summands in $\Sigma\Pi$-series) that provides given accuracy with given probability.
Received: 11.09.1998
Bibliographic databases:
Document Type: Article
UDC: 519.21+519.24
Language: English
Citation: K. I. Kutchinsky, “An error estimation in $\Sigma\Pi$-approximation via statistical methods”, Sib. Zh. Vychisl. Mat., 2:1 (1999), 37–46
Citation in format AMSBIB
\Bibitem{Kuc99}
\by K.~I.~Kutchinsky
\paper An error estimation in $\Sigma\Pi$-approximation via statistical methods
\jour Sib. Zh. Vychisl. Mat.
\yr 1999
\vol 2
\issue 1
\pages 37--46
\mathnet{http://mi.mathnet.ru/sjvm322}
\zmath{https://zbmath.org/?q=an:0917.65011}
Linking options:
  • https://www.mathnet.ru/eng/sjvm322
  • https://www.mathnet.ru/eng/sjvm/v2/i1/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:179
    Full-text PDF :62
    References:53
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024