Loading [MathJax]/jax/output/CommonHTML/jax.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 1998, Volume 1, Number 1, Pages 77–88 (Mi sjvm293)  

This article is cited in 3 scientific papers (total in 3 papers)

Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves

V. V. Ostapenko

M. A. Lavrent'ev Institute of Hydrodynamics, Novosibirsk
Full-text PDF (590 kB) Citations (3)
References:
Abstract: Introducted here, is the concept of (ε,δ)-Hugoniot's condition being the relatioship which links generalised solution magnitudes in points (tδ,x(t)+ε) and (t+δ,x(t)ε) for both sides of non-stationary shock wave front line x=x(t). It is showed here, that the explicit bi-layer with respect to time conservative difference schemes for δ0 approximate (ε,δ)-Hugoniot's conditions only with the first order, independent of their accuracy for smooth solutions. At the same time, if the front lines are quite smooth, then for δ=0 these schemes approximate (ε,0)-Hugoniot's conditions with the same order they have for smooth solutions.
Received: 18.10.1997
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: V. V. Ostapenko, “Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves”, Sib. Zh. Vychisl. Mat., 1:1 (1998), 77–88
Citation in format AMSBIB
\Bibitem{Ost98}
\by V.~V.~Ostapenko
\paper Approximation of Hugoniot's conditions by explicit conservative difference schemes for non-stationar shock waves
\jour Sib. Zh. Vychisl. Mat.
\yr 1998
\vol 1
\issue 1
\pages 77--88
\mathnet{http://mi.mathnet.ru/sjvm293}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1699434}
\zmath{https://zbmath.org/?q=an:0906.76053}
Linking options:
  • https://www.mathnet.ru/eng/sjvm293
  • https://www.mathnet.ru/eng/sjvm/v1/i1/p77
  • This publication is cited in the following 3 articles:
    1. A. F. Voevodin, V. V. Ostapenko, “O raschete preryvnykh voln v otkrytykh ruslakh”, Sib. zhurn. vychisl. matem., 3:4 (2000), 305–321  mathnet  zmath
    2. V. V. Ostapenko, “Construction of high-order accurate shock-capturing finite difference schemes for unsteady shock waves”, Comput. Math. Math. Phys., 40:12 (2000), 1784–1800  mathnet  mathscinet  zmath  elib
    3. V. V. Ostapenko, “Raznostnaya skhema povyshennogo poryadka skhodimosti na nestatsionarnoi udarnoi volne”, Sib. zhurn. vychisl. matem., 2:1 (1999), 47–56  mathnet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :112
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025