Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 1998, Volume 1, Number 1, Pages 59–66 (Mi sjvm291)  

This article is cited in 15 scientific papers (total in 15 papers)

The finite-dimensional approximation for the Lavrent'ev method

L. D. Menikhesa, V. P. Tananab

a Chelyabinsk State Technical University
b Chelyabinsk State University
References:
Abstract: The generalization of the Lavrent'ev method for a solution of ill-posed problems is considered. The convergence criterion for the finite-dimensional approximation in terms of duality of the Banach spaces has been obtained.
Received: 14.10.1997
Bibliographic databases:
Document Type: Article
UDC: 517.948
Language: Russian
Citation: L. D. Menikhes, V. P. Tanana, “The finite-dimensional approximation for the Lavrent'ev method”, Sib. Zh. Vychisl. Mat., 1:1 (1998), 59–66
Citation in format AMSBIB
\Bibitem{MenTan98}
\by L.~D.~Menikhes, V.~P.~Tanana
\paper The finite-dimensional approximation for the Lavrent'ev method
\jour Sib. Zh. Vychisl. Mat.
\yr 1998
\vol 1
\issue 1
\pages 59--66
\mathnet{http://mi.mathnet.ru/sjvm291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1699432}
\zmath{https://zbmath.org/?q=an:0907.65050}
Linking options:
  • https://www.mathnet.ru/eng/sjvm291
  • https://www.mathnet.ru/eng/sjvm/v1/i1/p59
  • This publication is cited in the following 15 articles:
    1. Yaparova N., “Numerical Methods For Solving a Boundary-Value Inverse Heat Conduction Problem”, Inverse Probl. Sci. Eng., 22:5 (2014), 832–847  crossref  mathscinet  zmath  isi  elib  scopus
    2. N. M. Yaparova, “Chislennoe modelirovanie reshenii obratnoi granichnoi zadachi teploprovodnosti”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 6:3 (2013), 112–124  mathnet
    3. Kamaltdinova T.S., “Ob otsenke dostovernosti informatsii, preobrazovannoi nelineinym metodom”, Vestnik yuzhno-uralskogo gosudarstvennogo universiteta. seriya: kompyuternye tekhnologii, upravlenie, radioelektronika, 2012, no. 35, 25–29  elib
    4. A. B. Bredikhina, “Nelineinyi metod proektsionnoi regulyarizatsii”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2011, no. 10, 4–11  mathnet
    5. V. P. Tanana, N. Yu. Kolesnikova, “Error estimation of approximate solutions to one inverse problem for a parabolic equation”, Russian Math. (Iz. VUZ), 53:9 (2009), 38–44  mathnet  crossref  mathscinet  zmath
    6. V. P. Tanana, “On an order-optimal method for solving an inverse problem for a parabolic equation”, J. Appl. Industr. Math., 3:3 (2009), 395–400  mathnet  crossref  mathscinet
    7. V. P. Tanana, M. G. Bulatova, “Order-optimal methods for the approximation of a piecewise-continuous solution to a certain inverse problem”, Russian Math. (Iz. VUZ), 51:3 (2007), 60–67  mathnet  crossref  mathscinet  zmath
    8. Tanana V.P., Kolesnikova N.Yu., “Ob optimalnom metode resheniya odnoi obratnoi zadachi teplovoi diagnostiki”, Vestn. Yuzhno-Uralskogo gos. un-ta. Ser.: Matematika. Fizika. Khimiya, 91:19 (2007), 48–54
    9. V. P. Tanana, N. M. Yaparova, “Ob optimalnom po poryadku metode resheniya uslovno-korrektnykh zadach”, Sib. zhurn. vychisl. matem., 9:4 (2006), 353–368  mathnet
    10. Tanana V.P., “Order-optimal method for solving an inverse problem for a parabolic equation”, Doklady Mathematics, 73:2 (2006), 226–228  mathnet  crossref  mathscinet  mathscinet  zmath  isi  elib  elib  scopus
    11. V. P. Tanana, I. V. Khudishkina, “On an optimal method for solving an inverse Stefan problem”, J. Appl. Industr. Math., 1:2 (2007), 254–259  mathnet  crossref  mathscinet  zmath
    12. V. P. Tanana, I. V. Tabarintseva, “On an approximation method of a discontinuous solution of an ill-posed problem”, J. Appl. Industr. Math., 1:1 (2007), 116–126  mathnet  crossref  mathscinet
    13. Tanana V.P., “A new approach to the concept of optimality of methods for solving ill-posed problems”, Doklady Mathematics, 68:1 (2003), 17–19  mathnet  mathscinet  zmath  isi
    14. V. P. Tanana, E. V. Khudyshkina, “Ob optimalnosti metoda ustanovleniya”, Vestnik ChelGU, 2003, no. 7, 165–173  mathnet
    15. V. P. Tanana, N. M. Yaparova, “Ob optimalnosti metoda nevyazki”, Vestnik ChelGU, 2003, no. 7, 174–188  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:512
    Full-text PDF :207
    References:99
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025