Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2010, Volume 13, Number 2, Pages 143–160 (Mi sjvm274)  

This article is cited in 2 scientific papers (total in 2 papers)

The solution to the 2D Maxwell equations by Laguerre spectral method

A. F. Mastryukov, B. G. Mikhailenko

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
Full-text PDF (361 kB) Citations (2)
References:
Abstract: In this paper, a spectral method for solving 2D Maxwell equations with relaxation of electromagnetic parameters is presented. The method proposed is based on the expansion of equations solution in the Laguerre functions in the temporal domain.
The operation of functions convolution that is a part of formulas, describing relaxation processes is reduced to the sum of harmonics products. Maxwell's equations transform to a system of linear algebraic equations for harmonics of the solution. In the algorithm, the inner parameter of the Laguerre transform is used. With large values of this parameter, the solution is shifted to the field of high harmonics. This is done to simplify the numerical algorithm and to increase the efficiency of the problem solution.
The results of comparison between the accuracy of the Laguerre method and a finite-difference method both for 2D medium structure and for a layered medium are given. The results of comparison of efficiency of the spectral and the finite difference methods for the axial and for the plane geometries of the problem are presented.
Key words: Maxwell's equations, electromagnetic wave, relaxation time, conductivity, dielectric permittivity, Laguerre method, finite difference, axial symmetry, linear system equations, accuracy.
Received: 22.06.2009
Revised: 12.10.2009
English version:
Numerical Analysis and Applications, 2010, Volume 3, Issue 2, Pages 118–132
DOI: https://doi.org/10.1134/S1995423910020023
Bibliographic databases:
Document Type: Article
UDC: 550.834
Language: Russian
Citation: A. F. Mastryukov, B. G. Mikhailenko, “The solution to the 2D Maxwell equations by Laguerre spectral method”, Sib. Zh. Vychisl. Mat., 13:2 (2010), 143–160; Num. Anal. Appl., 3:2 (2010), 118–132
Citation in format AMSBIB
\Bibitem{MasMik10}
\by A.~F.~Mastryukov, B.~G.~Mikhailenko
\paper The solution to the 2D Maxwell equations by Laguerre spectral method
\jour Sib. Zh. Vychisl. Mat.
\yr 2010
\vol 13
\issue 2
\pages 143--160
\mathnet{http://mi.mathnet.ru/sjvm274}
\transl
\jour Num. Anal. Appl.
\yr 2010
\vol 3
\issue 2
\pages 118--132
\crossref{https://doi.org/10.1134/S1995423910020023}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953527647}
Linking options:
  • https://www.mathnet.ru/eng/sjvm274
  • https://www.mathnet.ru/eng/sjvm/v13/i2/p143
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:988
    Full-text PDF :376
    References:85
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024