Abstract:
In thermal diagnostics of rocket engines [1], it is necessary to take into account the physical properties of composite materials used. This brings about the solution to inverse boundary value problems for the parabolic equation with discontinuity coefficients. High requirements imposed upon the accuracy of approximate solutions of the given class of problems make it possible to obtain error estimations of the methods used.
Citation:
V. P. Tanana, M. G. Bulatova, “An error estimation of an approximate solution of one inverse problem of thermal diagnostics”, Sib. Zh. Vychisl. Mat., 13:1 (2010), 89–100; Num. Anal. Appl., 3:1 (2010), 71–81
\Bibitem{TanBul10}
\by V.~P.~Tanana, M.~G.~Bulatova
\paper An error estimation of an approximate solution of one inverse problem of thermal diagnostics
\jour Sib. Zh. Vychisl. Mat.
\yr 2010
\vol 13
\issue 1
\pages 89--100
\mathnet{http://mi.mathnet.ru/sjvm270}
\transl
\jour Num. Anal. Appl.
\yr 2010
\vol 3
\issue 1
\pages 71--81
\crossref{https://doi.org/10.1134/S1995423910010088}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952212718}
Linking options:
https://www.mathnet.ru/eng/sjvm270
https://www.mathnet.ru/eng/sjvm/v13/i1/p89
This publication is cited in the following 4 articles:
Tabarintseva E.V., 2018 Global Smart Industry Conference (Glosic), IEEE, 2018
E.V. Tabarintseva, 2018 Global Smart Industry Conference (GloSIC), 2018, 1
V. P. Tanana, I. A. Gainova, A. I. Sidikova, “Ob otsenke pogreshnosti priblizhennogo resheniya odnoi pereopredelennoi obratnoi zadachi teplovoi diagnostiki”, Sib. zhurn. industr. matem., 15:1 (2012), 145–154
V. P. Tanana, “An order-optimal method for solving an inverse problem for a parabolic equation”, Num. Anal. Appl., 3:4 (2010), 367–380