Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2002, Volume 5, Number 3, Pages 233–254 (Mi sjvm252)  

This article is cited in 12 scientific papers (total in 12 papers)

Numerical solution to the vector tomography problem using polynomial basis

E. Yu. Derevtsov, I. G. Kashina

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The problem of a reconstruction of a solenoidal part of a vector field in the circle is considered if its ray transform is known. Two variants of numerical solution of the problem are developed. In the first of them, a polynomial approximation of the vector field that was obtained by means of the least squares method contains an potential part. Thus a further step of solving the problem is to separate from the approximation a potential vector field by finding a solution for a homogeneous boundary value problem for the Poisson equation. Investigation of the structure of finite-dimensional subspaces of solenoidal and potential vector fields of the polynomial type allows to state a problem of determining of coefficients of the polynomial approximation of the potential part as the problem of step-by-step solving of a set of systems of linear equations of increasing dimensions. The second way consists in constructing subspaces of the basis polynomial solenoidal fields. In this case, the least squares method immediately gives a polynomial approximation of a solenoidal part of the vector field. Efficiency of the constructed algorithms is verified by the numerical simulation. The results of comparative test of the algorithms show that the accuracy of both algorithms is good and similar to one another.
Received: 14.06.2001
Revised: 07.09.2001
Bibliographic databases:
UDC: 514.7+517.98+519.61
Language: Russian
Citation: E. Yu. Derevtsov, I. G. Kashina, “Numerical solution to the vector tomography problem using polynomial basis”, Sib. Zh. Vychisl. Mat., 5:3 (2002), 233–254
Citation in format AMSBIB
\Bibitem{DerKas02}
\by E.~Yu.~Derevtsov, I.~G.~Kashina
\paper Numerical solution to the vector tomography problem using polynomial basis
\jour Sib. Zh. Vychisl. Mat.
\yr 2002
\vol 5
\issue 3
\pages 233--254
\mathnet{http://mi.mathnet.ru/sjvm252}
\zmath{https://zbmath.org/?q=an:1027.65176}
Linking options:
  • https://www.mathnet.ru/eng/sjvm252
  • https://www.mathnet.ru/eng/sjvm/v5/i3/p233
  • This publication is cited in the following 12 articles:
    1. I. E. Svetov, A. P. Polyakova, “Decomposition of symmetric tensor fields in $\mathbb{R}^3$”, J. Appl. Industr. Math., 17:1 (2023), 199–212  mathnet  crossref  crossref
    2. Polyakova A.P., Svetov I.E., Hahn B.N., “the Singular Value Decomposition of the Operators of the Dynamic Ray Transforms Acting on 2D Vector Fields”, Numerical Computations: Theory and Algorithms, Pt II, Lecture Notes in Computer Science, 11974, eds. Sergeyev Y., Kvasov D., Springer International Publishing Ag, 2020, 446–453  crossref  zmath  isi  scopus
    3. I. E. Svetov, A. P. Polyakova, S. V. Maltseva, “The method of approximate inverse for ray transform operators on two-dimensional symmetric $m$-tensor fields”, J. Appl. Industr. Math., 13:1 (2019), 157–167  mathnet  crossref  crossref  elib
    4. Derevtsov E.Yu., Louis A.K., Maltseva S.V., Polyakova A.P., Svetov I.E., “Numerical Solvers Based on the Method of Approximate Inverse For 2D Vector and 2-Tensor Tomography Problems”, Inverse Probl., 33:12 (2017), 124001  crossref  mathscinet  zmath  isi  scopus
    5. Svetov I.E. Maltseva S.V. Polyakova A.P., “Approximate Inversion of Operators of Two-Dimensional Vector Tomography”, Sib. Electron. Math. Rep., 13 (2016), 607–623  isi
    6. A. P. Polyakova, I. E. Svetov, “Numerical solution of reconstruction problem of a potential vector field in a ball from its normal Radon transform”, J. Appl. Industr. Math., 9:4 (2015), 547–558  mathnet  crossref  crossref  mathscinet  elib
    7. Svetov I.E., Derevtsov E.Yu., Volkov Yu.S., Schuster T., “A Numerical Solver Based on B-Splines for 2D Vector Field Tomography in a Refracting Medium”, Math. Comput. Simul., 97 (2014), 207–223  crossref  mathscinet  isi  elib  scopus
    8. I. E. Svetov, A. P. Polyakova, “Sravnenie dvukh algoritmov chislennogo resheniya zadachi dvumernoi vektornoi tomografii”, Sib. elektron. matem. izv., 10 (2013), 90–108  mathnet
    9. E. Yu. Derevtsov, V. V. Pickalov, “Reconstruction of vector fields and their singularities from ray transforms”, Num. Anal. Appl., 4:1 (2011), 21–35  mathnet  crossref
    10. E. Yu. Derevtsov, “Nekotorye zadachi neskalyarnoi tomografii”, Sib. elektron. matem. izv., 7 (2010), 81–111  mathnet
    11. A. P. Polyakova, “O poluchenii analiticheskikh vyrazhenii dlya obrazov $B$-splainov pri preobrazovanii Radona i ikh ispolzovanii v zadachakh skalyarnoi tomografii”, Sib. elektron. matem. izv., 7 (2010), 248–257  mathnet
    12. Schuster T., The method of approximate inverse: theory and applications, Lecture Notes in Math., 1906, Springer, Berlin, 2007, xiv+198 pp.  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :180
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025