Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2002, Volume 5, Number 2, Pages 189–198 (Mi sjvm248)  

This article is cited in 2 scientific papers (total in 2 papers)

On solution of an ill-posed problem for a semilinear differential equation

V. P. Tanana, I. V. Tabarintseva

Chelyabinsk State University
Full-text PDF (451 kB) Citations (2)
References:
Abstract: An extensive literature is devoted to the ill-posed problems connected with a nonlinear operator and differential-operator equations. A regularization method is usually constructed by using the “operator” approach and special properties of the problem operator (for instance, monotonicity). In this paper, stable approximate solutions of an ill-posed differential problem are constructed by a method of the quasi-inversion type. The convergence of the constructed approximate solutions to the exact solution of the initial problem is investigated.
Received: 10.02.2000
Revised: 30.10.2001
Bibliographic databases:
UDC: 518.517.948
Language: Russian
Citation: V. P. Tanana, I. V. Tabarintseva, “On solution of an ill-posed problem for a semilinear differential equation”, Sib. Zh. Vychisl. Mat., 5:2 (2002), 189–198
Citation in format AMSBIB
\Bibitem{TanTab02}
\by V.~P.~Tanana, I.~V.~Tabarintseva
\paper On solution of an ill-posed problem for a~semilinear differential equation
\jour Sib. Zh. Vychisl. Mat.
\yr 2002
\vol 5
\issue 2
\pages 189--198
\mathnet{http://mi.mathnet.ru/sjvm248}
\zmath{https://zbmath.org/?q=an:1029.35220}
Linking options:
  • https://www.mathnet.ru/eng/sjvm248
  • https://www.mathnet.ru/eng/sjvm/v5/i2/p189
  • This publication is cited in the following 2 articles:
    1. V. P. Tanana, E. V. Tabarintseva, “O metode priblizheniya kusochno-nepreryvnykh reshenii nelineinykh obratnykh zadach”, Sib. zhurn. vychisl. matem., 10:2 (2007), 221–228  mathnet
    2. E. V. Tabarintseva, “Ob otsenke pogreshnosti metoda kvaziobrascheniya pri reshenii zadachi Koshi dlya polulineinogo differentsialnogo uravneniya”, Sib. zhurn. vychisl. matem., 8:3 (2005), 259–271  mathnet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:267
    Full-text PDF :100
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025