Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2005, Volume 8, Number 3, Pages 207–218 (Mi sjvm221)  

The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation

Kwak Do Y., Lee Jun S.

Department of Mathematics, KAIST
References:
Abstract: In this paper, we analyze the $V$-cycle multigrid algorithm for a positive definite Helmholtz equation on a hexagonal grid. Specifically, we apply the $V$-cycle multigrid algorithm to the numerical scheme based on the mean value solutions for the Helmholtz equation on hexagonal grids introduced in [1], and show its convergence. The theory for the $V$-cycle multigrid convergence is carried out in the framework in [6] by estimating the energy norm of the prolongation operator and proving the approximation and regularity conditions. In numerical experiments, we report the eigenvalues, condition number and contraction number.
Key words: multigrid method, mean value solution, finite difference methods.
Received: 15.10.2003
Revised: 12.01.2005
Bibliographic databases:
MSC: 65N55, 65N06
Language: English
Citation: Kwak Do Y., Lee Jun S., “The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation”, Sib. Zh. Vychisl. Mat., 8:3 (2005), 207–218
Citation in format AMSBIB
\Bibitem{KwaLee05}
\by Kwak~Do~Y., Lee~Jun~S.
\paper The $V$-cycle multigrid convergence of some finite difference scheme for the Helmholtz equation
\jour Sib. Zh. Vychisl. Mat.
\yr 2005
\vol 8
\issue 3
\pages 207--218
\mathnet{http://mi.mathnet.ru/sjvm221}
\zmath{https://zbmath.org/?q=an:1078.65090}
Linking options:
  • https://www.mathnet.ru/eng/sjvm221
  • https://www.mathnet.ru/eng/sjvm/v8/i3/p207
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:218
    Full-text PDF :95
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024