Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2005, Volume 8, Number 2, Pages 143–148 (Mi sjvm216)  

This article is cited in 11 scientific papers (total in 11 papers)

The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere

A. S. Popov

Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
References:
Abstract: The definition of the best cubature formula invariant under the octahedral group of rotations with inversion for a sphere is given. The process of searching for the best cubature formulae of the given symmetry type is described. The table which contains the main characteristics of all the best today cubature formulae of the octahedral group of rotations with inversion up to the 53rd algebraic order of accuracy is given. The weights and the coordinates of the new cubature formulae of the 21st, 25th, 27th, 31st and 33rd orders of accuracy are given to 16 significant digits.
Key words: numerical integration, cubature formulae, octahedral group of rotations.
Received: 06.02.2003
Revised: 23.07.2004
Bibliographic databases:
UDC: 519.644.7
Language: Russian
Citation: A. S. Popov, “The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a sphere”, Sib. Zh. Vychisl. Mat., 8:2 (2005), 143–148
Citation in format AMSBIB
\Bibitem{Pop05}
\by A.~S.~Popov
\paper The search for the best cubature formulae invariant under the octahedral group of rotations with inversion for a~sphere
\jour Sib. Zh. Vychisl. Mat.
\yr 2005
\vol 8
\issue 2
\pages 143--148
\mathnet{http://mi.mathnet.ru/sjvm216}
\zmath{https://zbmath.org/?q=an:1112.65310}
Linking options:
  • https://www.mathnet.ru/eng/sjvm216
  • https://www.mathnet.ru/eng/sjvm/v8/i2/p143
  • This publication is cited in the following 11 articles:
    1. A. S. Popov, “Poisk nailuchshikh kubaturnykh formul na sfere, invariantnykh otnositelno gruppy vraschenii ikosaedra”, Sib. zhurn. vychisl. matem., 26:4 (2023), 415–430  mathnet  crossref
    2. A. S. Popov, “Cubature formulas on the sphere that are invariant under the transformations of the dihedral group of rotations $D_4$”, Sib. elektron. matem. izv., 17 (2020), 964–970  mathnet  crossref
    3. A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno preobrazovanii gruppy vraschenii diedra s inversiei $D_{3d}$”, Sib. elektron. matem. izv., 16 (2019), 1196–1204  mathnet  crossref
    4. A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno grupp simmetrii pravilnykh mnogogrannikov”, Sib. elektron. matem. izv., 14 (2017), 190–198  mathnet  crossref
    5. A. S. Popov, “The cubature formulas on a sphere invariant to the icosahedral group of rotations with inversion”, Num. Anal. Appl., 10:4 (2017), 339–346  mathnet  crossref  crossref  isi  elib
    6. A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy diedra $\mathrm{D_{2h}}$”, Sib. elektron. matem. izv., 13 (2016), 252–259  mathnet  crossref
    7. A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy vraschenii diedra s inversiei $\mathrm{D_{4h}}$”, Sib. elektron. matem. izv., 12 (2015), 457–464  mathnet  crossref
    8. A. S. Popov, “Kubaturnye formuly na sfere, invariantnye otnositelno gruppy tetraedra s inversiei”, Sib. elektron. matem. izv., 11 (2014), 372–379  mathnet
    9. A. S. Popov, “The cubature formulas on a sphere invariant with respect to a dihedral group of rotations with inversion $D_{6h}$”, Num. Anal. Appl., 6:1 (2013), 49–53  mathnet  crossref  mathscinet  elib
    10. Malkov E.A., Ivanov M.S., “Ob odnoi skheme vychisleniya integrala stolknovenii boltsmana”, Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, 13:1 (2012), 98–106 A scheme for evaluating the boltzmann collision integral  mathnet  elib
    11. A. S. Popov, “The cubature formulas on a sphere that are invariant with respect to the icosahedral group of rotations”, Num. Anal. Appl., 1:4 (2008), 355–361  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:436
    Full-text PDF :147
    References:74
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025