Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2003, Volume 6, Number 1, Pages 37–57 (Mi sjvm175)  

This article is cited in 4 scientific papers (total in 4 papers)

On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)

V. È. Gheit

Chelyabinsk State University
References:
Abstract: The present paper is the sequel of the results of the second part [2]. The theorems stated in [6] have been proved. These theorems contain the characterization of points of the sets $D_i(n,4)$, $i=\overline{1,4}$, from [2, Theorem 2.2] and present a final classification of polynomials, which are the least deviating from zero in themetric $L[-1,1]$ with four prescribed leading coefficients.
Received: 14.11.2001
UDC: 517.4
Language: Russian
Citation: V. È. Gheit, “On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)”, Sib. Zh. Vychisl. Mat., 6:1 (2003), 37–57
Citation in format AMSBIB
\Bibitem{Ghe03}
\by V.~\`E.~Gheit
\paper On the polynomials, the least deviating from zero in $L[-1,1]$ metric (third part)
\jour Sib. Zh. Vychisl. Mat.
\yr 2003
\vol 6
\issue 1
\pages 37--57
\mathnet{http://mi.mathnet.ru/sjvm175}
Linking options:
  • https://www.mathnet.ru/eng/sjvm175
  • https://www.mathnet.ru/eng/sjvm/v6/i1/p37
  • This publication is cited in the following 4 articles:
    1. Arestov V. Deikalova M., “Nikol'Skii Inequality Between the Uniform Norm and l (Q) -Norm With Jacobi Weight of Algebraic Polynomials on An Interval”, Anal. Math., 42:2 (2016), 91–120  crossref  isi
    2. V. È. Gheit, V. V. Gheit, “On polynomials, the least deviating from zero in $L[-1,1]$ metric, with five prescribed coefficients”, Num. Anal. Appl., 2:1 (2009), 24–33  mathnet  crossref
    3. A. G. Babenko, Yu. V. Kryakin, “Integral approximation of the characteristic function of an interval by trigonometric polynomials”, Proc. Steklov Inst. Math. (Suppl.), 264, suppl. 1 (2009), S19–S38  mathnet  crossref  isi  elib
    4. V. È. Gheit, N. Zh. Gheit, “Criteria for the constant sign property for real polynomials on a segment”, Russian Math. (Iz. VUZ), 52:11 (2008), 70–75  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:395
    Full-text PDF :121
    References:60
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025