Sibirskii Zhurnal Vychislitel'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Vychisl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Vychislitel'noi Matematiki, 2004, Volume 7, Number 3, Pages 261–275 (Mi sjvm162)  

Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines

A. B. Pevnyi

Syktyvkar State University, Faculty of Mathematics
References:
Abstract: A non-stationary multiresolution analysis $\{V_k\}_{k\geq 0}$ $\ell^2(\mathbb Z)$ in the space $\ell^2(\mathbb Z)$ is performed, the subspaces $V_k$ consisting of discrete splines. In each $V_k$, there is a function $\varphi_k$ such that the system $\{\varphi_k(\cdot-l2^k):l\in\mathbb Z\}$ forms the Riesz base of $V_k$. A system of wavelets $\psi_{kl}(j)=\psi_k(j-l2^k)$, $l\in\mathbb Z$, $k=1,2\dots$ is not generated by shifts and dilations of the unique function. The subspaces $W_k=\operatorname{span}\{\psi_{kl}:l\in\mathbb Z\}$ form an orthogonal expansion of the space: $\ell^2(\mathbb Z)=\oplus^{\infty}_{k=1}W_k$.
The space $V_k$ is the same as the space of discrete splines $S_{p,2^k}$ of order $p$ with a distance between the knots $2^k$. For every $p$, a multiresolution analysis is obtained (for $p=1$ – the Haar multiresolution analysis).
Key words: discrete splines, discrete wavelets, multiresolution analysis.
Received: 31.01.2003
Bibliographic databases:
UDC: 519.65
Language: Russian
Citation: A. B. Pevnyi, “Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines”, Sib. Zh. Vychisl. Mat., 7:3 (2004), 261–275
Citation in format AMSBIB
\Bibitem{Pev04}
\by A.~B.~Pevnyi
\paper Multiresolution analysis in the space $\ell^2(\mathbb Z)$ using discrete splines
\jour Sib. Zh. Vychisl. Mat.
\yr 2004
\vol 7
\issue 3
\pages 261--275
\mathnet{http://mi.mathnet.ru/sjvm162}
\zmath{https://zbmath.org/?q=an:1068.65152}
Linking options:
  • https://www.mathnet.ru/eng/sjvm162
  • https://www.mathnet.ru/eng/sjvm/v7/i3/p261
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Sibirskii Zhurnal Vychislitel'noi Matematiki
    Statistics & downloads:
    Abstract page:308
    Full-text PDF :117
    References:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024