|
Sibirskii Zhurnal Vychislitel'noi Matematiki, 2004, Volume 7, Number 1, Pages 25–42
(Mi sjvm142)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
On a multigrid method for solving partial eigenproblems
M. R. Larinab a Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences
b RWTH Aachen
Abstract:
Recently the direct application of a multigrid technique for computing the smallest eigenvalue and its corresponding eigenvector of a large symmetric positive definite matrix $A$ has been investigated in [5]. This method solves the eigenvalue problems on a sequence of nested grids using an interpolant of solution on each grid as initial guess for the next one and improving it by the full approximation scheme applied as an inner nonlinear multigrid method.
In the present paper, the generalization of the method for computing a few smallest eigenvalues and their corresponding eigenvectors of the elliptic self adjoint operator is presented. Moreover, the quality of the method is improved by using the nonlinear Gauss–Seidel iteration instead of its linearized version as pre- and post-smoothing steps. Finally, we give some advice for a good choice of multigrid-related parameters.
Key words:
multigrid methods, eigenvalue problems, sparse matrices.
Received: 13.01.2003
Citation:
M. R. Larin, “On a multigrid method for solving partial eigenproblems”, Sib. Zh. Vychisl. Mat., 7:1 (2004), 25–42
Linking options:
https://www.mathnet.ru/eng/sjvm142 https://www.mathnet.ru/eng/sjvm/v7/i1/p25
|
Statistics & downloads: |
Abstract page: | 291 | Full-text PDF : | 91 | References: | 50 |
|