Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2018, Volume 21, Number 2, Pages 17–31
DOI: https://doi.org/10.17377/sibjim.2018.21.201
(Mi sjim996)
 

This article is cited in 4 scientific papers (total in 4 papers)

Identification of parameters of nonlinear dynamical systems simulated by Volterra polynomials

I. V. Boikov, N. P. Krivulin

Penza State University, 40 Krasnaya str., 440026 Penza
Full-text PDF (267 kB) Citations (4)
References:
Abstract: We study the identification methods for the nonlinear dynamical systems described by Volterra series. One of the main problems in the dynamical system simulation is the problem of the choice of the parameters allowing the realization of a desired behavior of the system. If the structure of the model is identified in advance then the solution to this problem closely resembles the identification problem of the system parameters.
We also investigate the parameter identification of continuous and discrete nonlinear dynamical systems. The identification methods in the continuous case are based on application of the generalized Borel Theorem in combination with integral transformations. To investigate discrete systems, we use a discrete analog of the generalized Borel Theorem in conjunction with discrete transformations. Using model examples, we illustrate the application of the developed methods for simulation of systems with specified characteristics.
Keywords: simulation, nonlinear system, identification, dynamical system, Volterra series, Volterra kernel.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00594
Received: 12.09.2017
English version:
Journal of Applied and Industrial Mathematics, 2018, Volume 12, Issue 2, Pages 220–233
DOI: https://doi.org/10.1134/S1990478918020035
Bibliographic databases:
Document Type: Article
UDC: 681.311
Language: Russian
Citation: I. V. Boikov, N. P. Krivulin, “Identification of parameters of nonlinear dynamical systems simulated by Volterra polynomials”, Sib. Zh. Ind. Mat., 21:2 (2018), 17–31; J. Appl. Industr. Math., 12:2 (2018), 220–233
Citation in format AMSBIB
\Bibitem{BoyKri18}
\by I.~V.~Boikov, N.~P.~Krivulin
\paper Identification of parameters of nonlinear dynamical systems simulated by Volterra polynomials
\jour Sib. Zh. Ind. Mat.
\yr 2018
\vol 21
\issue 2
\pages 17--31
\mathnet{http://mi.mathnet.ru/sjim996}
\crossref{https://doi.org/10.17377/sibjim.2018.21.201}
\elib{https://elibrary.ru/item.asp?id=35459097}
\transl
\jour J. Appl. Industr. Math.
\yr 2018
\vol 12
\issue 2
\pages 220--233
\crossref{https://doi.org/10.1134/S1990478918020035}
\elib{https://elibrary.ru/item.asp?id=35498165}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85047877887}
Linking options:
  • https://www.mathnet.ru/eng/sjim996
  • https://www.mathnet.ru/eng/sjim/v21/i2/p17
  • This publication is cited in the following 4 articles:
    1. Tiancheng Zong, Junhong Li, Guoping Lu, “Parameter identification of dual-rate Hammerstein-Volterra nonlinear systems by the hybrid particle swarm-gradient algorithm based on the auxiliary model”, Engineering Applications of Artificial Intelligence, 117 (2023), 105526  crossref
    2. I. V. Boikov, N. P. Krivulin, S. V. Abramov, V. P. Malanin, V. V. Kikot, “Recovery of the input signals of eddy-current displacement transducers under thermal-shock actions”, Meas. Tech., 61:11 (2019), 1118–1125  crossref  isi  scopus
    3. Ilia Boikov, Nikolay Krivulin, 2019 XXI International Conference Complex Systems: Control and Modeling Problems (CSCMP), 2019, 658  crossref
    4. N. P. Krivulin, “Vosstanovlenie vkhodnykh signalov nestatsionarnykh dinamicheskikh sistem”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 2018, no. 3, 64–78  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:316
    Full-text PDF :191
    References:49
    First page:7
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025