|
Global solvability of the regularized problem of the volumetric growth of hyperelastic materials
A. V. Beskrovnykh Novosibirsk State University, 2 Pirogova str., 630090 Novosibirsk
Abstract:
We present a model of volumetric growth of biological materials in the framework of finite elasticity. Surface effects on the boundary with the environment are taken into account. New mathematical results are obtained for the model, the main of which is a complete proof of global existence of a solution. The results can be used in further scientific developments at the juncture of biology and mechanics.
Keywords:
volumetric growth, existence of global solutions.
Received: 16.05.2016
Citation:
A. V. Beskrovnykh, “Global solvability of the regularized problem of the volumetric growth of hyperelastic materials”, Sib. Zh. Ind. Mat., 20:3 (2017), 11–23; J. Appl. Industr. Math., 11:3 (2017), 312–324
Linking options:
https://www.mathnet.ru/eng/sjim964 https://www.mathnet.ru/eng/sjim/v20/i3/p11
|
Statistics & downloads: |
Abstract page: | 236 | Full-text PDF : | 56 | References: | 57 | First page: | 7 |
|