Abstract:
We consider an equilibrium of a composite plate containing a through vertical crack of variable length on the separation boundary between the matrix and the elastic inclusion. The deformation of the matrix is described by the Timoshenko model, and the deformation of the elastic inclusion is described by the Kirchhoff–Love model. We obtain a formula for the derivative of the energy functional with respect to the crack length.
Keywords:
plate, crack, nopenetration condition, elastic inclusion, derivative of the energy functional.
Citation:
N. V. Neustroeva, N. P. Lazarev, “The derivative of the energy functional in an equilibrium problem for a Timoshenko plate with a crack on the boundary of an elastic inclusion”, Sib. Zh. Ind. Mat., 20:2 (2017), 59–70; J. Appl. Industr. Math., 11:2 (2017), 252–262
\Bibitem{NeuLaz17}
\by N.~V.~Neustroeva, N.~P.~Lazarev
\paper The derivative of the energy functional in an equilibrium problem for a~Timoshenko plate with a~crack on the boundary of an elastic inclusion
\jour Sib. Zh. Ind. Mat.
\yr 2017
\vol 20
\issue 2
\pages 59--70
\mathnet{http://mi.mathnet.ru/sjim959}
\crossref{https://doi.org/10.17377/sibjim.2017.20.207}
\elib{https://elibrary.ru/item.asp?id=29116862}
\transl
\jour J. Appl. Industr. Math.
\yr 2017
\vol 11
\issue 2
\pages 252--262
\crossref{https://doi.org/10.1134/S1990478917020119}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019728973}
Linking options:
https://www.mathnet.ru/eng/sjim959
https://www.mathnet.ru/eng/sjim/v20/i2/p59
This publication is cited in the following 4 articles:
N. P. Lazarev, G. M. Semenova, “Equilibrium problem for a Timoshenko plate
with a geometrically nonlinear condition of nonpenetration
for a vertical crack”, J. Appl. Industr. Math., 14:3 (2020), 532–540
Tatiana S. Popova, “On numerical solving of junction problem for semirigid and Timoshenko inclusions in elastic body”, Procedia Structural Integrity, 30 (2020), 113
V. A. Krysko, J. Awrejcewicz, I. V. Papkova, O. A. Saltykova, A. V. Krysko, “Chaotic contact dynamics of two microbeams under various kinematic hypotheses”, Int. J. Nonlinear Sci. Numer. Simul., 20:3-4 (2019), 373–386
T. S. Popova, “Problems on thin inclusions in a two-dimensional viscoelastic body”, J. Appl. Industr. Math., 12:2 (2018), 313–324