Abstract:
We construct a $9$-dimensional nonlinear dynamical system modeling the initial stage of the interaction of three adjacent cells in a proneural cluster of Drosophila melanogaster. Conditions of existence of three stable equilibrium points in the phase portrait of this system are obtained, other equilibrium points are listed, a biological interpretation is given.
Keywords:
nonlinear dynamical system, gene network, negative and positive feedback, phase portrait, equilibrium point, stability.
Citation:
N. B. Ayupova, V. P. Golubyatnikov, “A three-cell model of the initial stage of the development of one proneural cluster”, Sib. Zh. Ind. Mat., 20:2 (2017), 15–20; J. Appl. Industr. Math., 11:2 (2017), 168–173
\Bibitem{AyuGol17}
\by N.~B.~Ayupova, V.~P.~Golubyatnikov
\paper A three-cell model of the initial stage of the development of one proneural cluster
\jour Sib. Zh. Ind. Mat.
\yr 2017
\vol 20
\issue 2
\pages 15--20
\mathnet{http://mi.mathnet.ru/sjim954}
\crossref{https://doi.org/10.17377/sibjim.2017.20.202}
\elib{https://elibrary.ru/item.asp?id=29116857}
\transl
\jour J. Appl. Industr. Math.
\yr 2017
\vol 11
\issue 2
\pages 168--173
\crossref{https://doi.org/10.1134/S1990478917020028}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85019719918}
Linking options:
https://www.mathnet.ru/eng/sjim954
https://www.mathnet.ru/eng/sjim/v20/i2/p15
This publication is cited in the following 2 articles:
D. P. Furman, T. A. Bukharina, V. P. Golubyatnikov, “The central regulatory circuit of the morphogenesis system drosophila mechanoreceptors: mutation effects”, J. Appl. Industr. Math., 17:3 (2023), 535–543
V. P. Golubyatnikov, N. E. Kirillova, “On Cycles in Models of Functioning of Circular Gene Networks”, J Math Sci, 246:6 (2020), 779