Abstract:
A dynamical mixed problem on an impact and the subsequent constant-speed motion of a circular cylinder in an ideal incompressible fluid. We study the influence of the physical and geometrical parameters of the problem on the form of the cavity and the configuration of the external free surface of the fluid at small times. We carry out an asymptotic analysis of the internal free boundary of the fluid which accounts for the dynamics of the separation points. The force of the reaction of the medium to the cylinder is found. The necessity of introducing additional cavitation zones for the dynamical impact problem is justified.
Keywords:
ideal incompressible fluid, circular cylinder, blow with separation, free border, cavity, small times, Froude number, cavitation number.
Citation:
M. V. Norkin, “Formation of a cavity under an inclined separation impact of a circular cylinder under the free surface of a heavy fluid”, Sib. Zh. Ind. Mat., 19:4 (2016), 81–92; J. Appl. Industr. Math., 10:4 (2016), 538–548
\Bibitem{Nor16}
\by M.~V.~Norkin
\paper Formation of a~cavity under an inclined separation impact of a~circular cylinder under the free surface of a~heavy fluid
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 4
\pages 81--92
\mathnet{http://mi.mathnet.ru/sjim941}
\crossref{https://doi.org/10.17377/sibjim.2016.19.409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588966}
\elib{https://elibrary.ru/item.asp?id=27208360}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 4
\pages 538--548
\crossref{https://doi.org/10.1134/S1990478916040104}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84996542683}
Linking options:
https://www.mathnet.ru/eng/sjim941
https://www.mathnet.ru/eng/sjim/v19/i4/p81
This publication is cited in the following 7 articles:
M. V. Norkin, “Dynamics of separation points after instant stopping of a circular cylinder in a disturbed liquid”, J. Appl. Mech. Tech. Phys., 63:4 (2022), 614–621
M. V. Norkin, “The movement of a rectangular cylinder in a liquid at short times after impact with formation of a cavity”, J. Appl. Industr. Math., 14:2 (2020), 385–395
M. V. Norkin, “Dinamika tochek otryva pri vertikalnom udare plavayuschego pryamougolnogo tsilindra”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 13:2 (2020), 108–120
M. V. Norkin, “Dynamics of separation points upon impact of a floating circular cylinder”, J. Appl. Mech. Tech. Phys., 60:5 (2019), 798–804
M. V. Norkin, “Mathematical model of cavitational braking of a torus in the liquid after impact”, Math. Models Comput. Simul., 11:2 (2019), 301–308
M. V. Norkin, “Free cavitational deceleration of a circular cylinder in a liquid after impact”, J. Appl. Industr. Math., 12:3 (2018), 510–518
M. V. Norkin, “Kavitatsionnoe tormozhenie tverdogo tela v vozmuschennoi zhidkosti”, Nelineinaya dinam., 13:2 (2017), 181–193