Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 4, Pages 81–92
DOI: https://doi.org/10.17377/sibjim.2016.19.409
(Mi sjim941)
 

This article is cited in 7 scientific papers (total in 7 papers)

Formation of a cavity under an inclined separation impact of a circular cylinder under the free surface of a heavy fluid

M. V. Norkin

Southern Federal University, Department of Mathematics, Mechanics and Computer Science, 8a Milchakov str., 344090 Rostov-on-Don
Full-text PDF (309 kB) Citations (7)
References:
Abstract: A dynamical mixed problem on an impact and the subsequent constant-speed motion of a circular cylinder in an ideal incompressible fluid. We study the influence of the physical and geometrical parameters of the problem on the form of the cavity and the configuration of the external free surface of the fluid at small times. We carry out an asymptotic analysis of the internal free boundary of the fluid which accounts for the dynamics of the separation points. The force of the reaction of the medium to the cylinder is found. The necessity of introducing additional cavitation zones for the dynamical impact problem is justified.
Keywords: ideal incompressible fluid, circular cylinder, blow with separation, free border, cavity, small times, Froude number, cavitation number.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1398.2014/к
Received: 30.11.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 4, Pages 538–548
DOI: https://doi.org/10.1134/S1990478916040104
Bibliographic databases:
Document Type: Article
UDC: 519.634
Language: Russian
Citation: M. V. Norkin, “Formation of a cavity under an inclined separation impact of a circular cylinder under the free surface of a heavy fluid”, Sib. Zh. Ind. Mat., 19:4 (2016), 81–92; J. Appl. Industr. Math., 10:4 (2016), 538–548
Citation in format AMSBIB
\Bibitem{Nor16}
\by M.~V.~Norkin
\paper Formation of a~cavity under an inclined separation impact of a~circular cylinder under the free surface of a~heavy fluid
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 4
\pages 81--92
\mathnet{http://mi.mathnet.ru/sjim941}
\crossref{https://doi.org/10.17377/sibjim.2016.19.409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588966}
\elib{https://elibrary.ru/item.asp?id=27208360}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 4
\pages 538--548
\crossref{https://doi.org/10.1134/S1990478916040104}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84996542683}
Linking options:
  • https://www.mathnet.ru/eng/sjim941
  • https://www.mathnet.ru/eng/sjim/v19/i4/p81
  • This publication is cited in the following 7 articles:
    1. M. V. Norkin, “Dynamics of separation points after instant stopping of a circular cylinder in a disturbed liquid”, J. Appl. Mech. Tech. Phys., 63:4 (2022), 614–621  mathnet  crossref  crossref  mathscinet  elib
    2. M. V. Norkin, “The movement of a rectangular cylinder in a liquid at short times after impact with formation of a cavity”, J. Appl. Industr. Math., 14:2 (2020), 385–395  mathnet  crossref  crossref  elib
    3. M. V. Norkin, “Dinamika tochek otryva pri vertikalnom udare plavayuschego pryamougolnogo tsilindra”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 13:2 (2020), 108–120  mathnet  crossref
    4. M. V. Norkin, “Dynamics of separation points upon impact of a floating circular cylinder”, J. Appl. Mech. Tech. Phys., 60:5 (2019), 798–804  crossref  crossref  mathscinet  zmath  isi  elib  scopus
    5. M. V. Norkin, “Mathematical model of cavitational braking of a torus in the liquid after impact”, Math. Models Comput. Simul., 11:2 (2019), 301–308  mathnet  crossref
    6. M. V. Norkin, “Free cavitational deceleration of a circular cylinder in a liquid after impact”, J. Appl. Industr. Math., 12:3 (2018), 510–518  mathnet  crossref  crossref  elib  elib
    7. M. V. Norkin, “Kavitatsionnoe tormozhenie tverdogo tela v vozmuschennoi zhidkosti”, Nelineinaya dinam., 13:2 (2017), 181–193  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:1514
    Full-text PDF :115
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025