Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 3, Pages 55–67
DOI: https://doi.org/10.17377/sibjim.2016.19.305
(Mi sjim928)
 

This article is cited in 16 scientific papers (total in 16 papers)

Solvability of a steady boundary value problem for a model system of equations of a barotropic motion of a mixture of viscous compressible fluids

D. A. Prokudina, M. V. Krayushkinab

a Lavrent'ev Institute of Hydrodynamics SB RAS, 15 Lavrent'ev av., 630090 Novosibirsk
b Kemerovo State University, 6 Krasnaya str., 650043 Kemerovo
References:
Abstract: We consider a boundary value problem for a model system of equations describing a steady barotropic motion of a homogeneous mixture of viscous compressible fluids in a bounded three-dimensional domain. An existence theorem is proved for weak solutions to the problem without constraints on the structure of the total viscosity matrix except the standard requirements of positive definiteness.
Keywords: existence theorem, steady boundary value problem, viscous compressible fluid, homogeneous mixture with two velocities, effective viscous flux.
Funding agency Grant number
Russian Science Foundation 15-11-20019
Received: 20.07.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 3, Pages 417–428
DOI: https://doi.org/10.1134/S1990478916030121
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: D. A. Prokudin, M. V. Krayushkina, “Solvability of a steady boundary value problem for a model system of equations of a barotropic motion of a mixture of viscous compressible fluids”, Sib. Zh. Ind. Mat., 19:3 (2016), 55–67; J. Appl. Industr. Math., 10:3 (2016), 417–428
Citation in format AMSBIB
\Bibitem{ProKra16}
\by D.~A.~Prokudin, M.~V.~Krayushkina
\paper Solvability of a~steady boundary value problem for a~model system of equations of a~barotropic motion of a~mixture of viscous compressible fluids
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 3
\pages 55--67
\mathnet{http://mi.mathnet.ru/sjim928}
\crossref{https://doi.org/10.17377/sibjim.2016.19.305}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588953}
\elib{https://elibrary.ru/item.asp?id=26477432}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 3
\pages 417--428
\crossref{https://doi.org/10.1134/S1990478916030121}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84983504758}
Linking options:
  • https://www.mathnet.ru/eng/sjim928
  • https://www.mathnet.ru/eng/sjim/v19/i3/p55
  • This publication is cited in the following 16 articles:
    1. A. E. Mamontov, D. A. Prokudin, “Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids”, J. Appl. Industr. Math., 15:1 (2021), 50–61  mathnet  crossref  crossref  elib
    2. D. A. Prokudin, “Existence of weak solutions to the problem on three-dimensional steady heat-conductive motions of compressible viscous multicomponent mixtures”, Siberian Math. J., 62:5 (2021), 895–907  mathnet  crossref  crossref  isi  elib
    3. A E Mamontov, D A Prokudin, “Global unique solvability of the initial-boundary value problem for one-dimensional barotropic equations of viscous compressible bifluids”, J. Phys.: Conf. Ser., 1666:1 (2020), 012032  crossref
    4. A. E. Mamontov, D. A. Prokudin, “Global unique solvability of the initial-boundary value problem for the equations of one-dimensional polytropic flows of viscous compressible multifluids”, J. Math. Fluid Mech., 21:1 (2019), UNSP 9  crossref  mathscinet  isi  scopus
    5. A. E. Mamontov, D. A. Prokudin, “Global Estimates and Solvability of the Regularized Problem About Three-Dimensional Non-Stationary Motion of Viscous Compressible Heat-Conducting Multi-Component Liquid”, Sib. Electron. Math. Rep., 16 (2019), 547–590  mathnet  crossref  mathscinet  zmath  isi  scopus
    6. Alexander Mamontov, Dmitry Prokudin, “Global solvability of the initial-boundary value problem for Navier–Stokes–Fourier type equations describing flows of viscous compressible heat-conducting multifluids”, J. Phys.: Conf. Ser., 1268:1 (2019), 012061  crossref
    7. A. E. Mamontov, D. A. Prokudin, “Solubility of unsteady equations of multi-component viscous compressible fluids”, Izv. Math., 82:1 (2018), 140–185  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    8. A. E. Mamontov, D. A. Prokudin, “Unique solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of multicomponent viscous compressible fluids”, Sib. Electron. Math. Rep., 15 (2018), 631–649  mathnet  crossref  mathscinet  isi
    9. A. Mamontov, D. Prokudin, “Global solvability of 1D equations of viscous compressible multi-fluids”, All-Russian Conference With International Participation Modern Problems of Continuum Mechanics and Explosion Physics Dedicated to the 60th Anniversary of Lavrentyev Institute of Hydrodynamics SB RAS, Journal of Physics Conference Series, 894, eds. Chesnokov A., Pruuel E., Shelukhin V., IOP Publishing Ltd, 2017, UNSP 012059  crossref  isi  scopus
    10. A. Mamontov, D. Prokudin, “Modeling viscous compressible barotropic multi-fluid flows”, All-Russian Conference With International Participation Modern Problems of Continuum Mechanics and Explosion Physics Dedicated to the 60th Anniversary of Lavrentyev Institute of Hydrodynamics SB RAS, Journal of Physics Conference Series, 894, eds. Chesnokov A., Pruuel E., Shelukhin V., IOP Publishing Ltd, 2017, UNSP 012058  crossref  isi  scopus
    11. A. A. Papin, M. A. Tokareva, “Correctness of the initial-boundary problem of the compressible fluid filtration in a viscous porous medium”, All-Russian Conference With International Participation Modern Problems of Continuum Mechanics and Explosion Physics Dedicated to the 60th Anniversary of Lavrentyev Institute of Hydrodynamics SB RAS, Journal of Physics Conference Series, 894, eds. Chesnokov A., Pruuel E., Shelukhin V., IOP Publishing Ltd, 2017, UNSP 012070  crossref  isi  scopus
    12. A. E. Mamontov, D. A. Prokudin, “Viscous Compressible Homogeneous Multi-Fluids With Multiple Velocities: Barotropic Existence Theory”, Sib. Electron. Math. Rep., 14 (2017), 388–397  mathnet  crossref  mathscinet  zmath  isi
    13. D. A. Prokudin, “Unique Solvability of Initial-Boundary Value Problem For a Model System of Equations For the Polytropic Motion of a Mixture of Viscous Compressible Fluids”, Sib. Electron. Math. Rep., 14 (2017), 568–585  mathnet  crossref  mathscinet  zmath  isi  scopus
    14. A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054  mathnet  crossref  crossref  isi  elib
    15. A. E. Mamontov, D. A. Prokudin, “Solubility of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sib. Electron. Math. Rep., 13 (2016), 664–693  crossref  isi
    16. A. E. Mamontov, D. A. Prokudin, “Solubility of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sib. Electron. Math. Rep., 13 (2016), 541–583  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:351
    Full-text PDF :86
    References:54
    First page:6
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025