Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2016, Volume 19, Number 2, Pages 3–16
DOI: https://doi.org/10.17377/sibjim.2016.19.201
(Mi sjim916)
 

This article is cited in 31 scientific papers (total in 31 papers)

Stability estimates of solutions to extremal problems for a nonlinear convection-diffusion-reaction equation

G. V. Alekseevab, R. V. Brizitskiiab, Zh. Yu. Saritskayab

a Institute of Applied Mathematics FEB RAS, 7 Radio str., 690041 Vladivostok
b Far Eastern Federal University, 8 Sukhanova str., 690950 Vladivostok
References:
Abstract: We consider an identification problem for a stationary nonlinear convection-diffusion-reaction equation in which the reaction coefficient depends nonlinearly on the concentration of the substance. This problem is reduced to an inverse extremal problem by optimization. Solvability is proved of the boundary value problem and the optimization problem. In the case that the reaction coefficient is quadratic when the equation acquires cubic nonlinearity, we deduce the conditions of optimality. Analyzing the latter, we establish estimates of the local stability of solutions to the eoptimization problem under small perturbations both of the cost functional and of the given velocity vector that occurs multiplicatively in the convection-diffusion-reaction equation.
Keywords: nonlinear convection-diffusion-reaction equation, Dirichlet problem, optimal control problem, solvability, optimality conditions, stability estimate.
Received: 28.07.2015
English version:
Journal of Applied and Industrial Mathematics, 2016, Volume 10, Issue 2, Pages 155–167
DOI: https://doi.org/10.1134/S1990478916020010
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: G. V. Alekseev, R. V. Brizitskii, Zh. Yu. Saritskaya, “Stability estimates of solutions to extremal problems for a nonlinear convection-diffusion-reaction equation”, Sib. Zh. Ind. Mat., 19:2 (2016), 3–16; J. Appl. Industr. Math., 10:2 (2016), 155–167
Citation in format AMSBIB
\Bibitem{AleBriSar16}
\by G.~V.~Alekseev, R.~V.~Brizitskii, Zh.~Yu.~Saritskaya
\paper Stability estimates of solutions to extremal problems for a~nonlinear convection-diffusion-reaction equation
\jour Sib. Zh. Ind. Mat.
\yr 2016
\vol 19
\issue 2
\pages 3--16
\mathnet{http://mi.mathnet.ru/sjim916}
\crossref{https://doi.org/10.17377/sibjim.2016.19.201}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549862}
\elib{https://elibrary.ru/item.asp?id=26001722}
\transl
\jour J. Appl. Industr. Math.
\yr 2016
\vol 10
\issue 2
\pages 155--167
\crossref{https://doi.org/10.1134/S1990478916020010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84971301646}
Linking options:
  • https://www.mathnet.ru/eng/sjim916
  • https://www.mathnet.ru/eng/sjim/v19/i2/p3
  • This publication is cited in the following 31 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024