Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2015, Volume 18, Number 3, Pages 63–75
DOI: https://doi.org/10.17377/sibjim.2015.18.307
(Mi sjim895)
 

This article is cited in 11 scientific papers (total in 11 papers)

Numerical solution of reconstruction problem of a potential vector field in a ball from its normal Radon transform

A. P. Polyakovaab, I. E. Svetovab

a Novosibirsk State University, 2 Pirogova st., 630090 Novosibirsk
b Sobolev Institute of Mathematics SB RAS, 4 Koptyug av., 630090 Novosibirsk
References:
Abstract: We propose a numerical solution of reconstruction problem of a potential vector field in a ball from the known values of the normal Radon transform. The algorithm is based on the method of truncated singular value decomposition. Numerical simulations confirm that the proposed method yields good results of reconstruction of potential vector fields.
Keywords: vector tomography, potential vector field, approximation, normal Radon transform, truncated singular value decomposition, orthogonal polynomials.
Received: 11.03.2015
English version:
Journal of Applied and Industrial Mathematics, 2015, Volume 9, Issue 4, Pages 547–558
DOI: https://doi.org/10.1134/S1990478915040110
Bibliographic databases:
Document Type: Article
UDC: 514.8+517.983+519.6
Language: Russian
Citation: A. P. Polyakova, I. E. Svetov, “Numerical solution of reconstruction problem of a potential vector field in a ball from its normal Radon transform”, Sib. Zh. Ind. Mat., 18:3 (2015), 63–75; J. Appl. Industr. Math., 9:4 (2015), 547–558
Citation in format AMSBIB
\Bibitem{PolSve15}
\by A.~P.~Polyakova, I.~E.~Svetov
\paper Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal Radon transform
\jour Sib. Zh. Ind. Mat.
\yr 2015
\vol 18
\issue 3
\pages 63--75
\mathnet{http://mi.mathnet.ru/sjim895}
\crossref{https://doi.org/10.17377/sibjim.2015.18.307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549841}
\elib{https://elibrary.ru/item.asp?id=23877192}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 4
\pages 547--558
\crossref{https://doi.org/10.1134/S1990478915040110}
Linking options:
  • https://www.mathnet.ru/eng/sjim895
  • https://www.mathnet.ru/eng/sjim/v18/i3/p63
  • This publication is cited in the following 11 articles:
    1. L Kunyansky, E McDugald, B Shearer, “Weighted Radon transforms of vector fields, with applications to magnetoacoustoelectric tomography”, Inverse Problems, 39:6 (2023), 065014  crossref
    2. Anna P. Polyakova, Ivan E. Svetov, “A numerical solution of the dynamic vector tomography problem using the truncated singular value decomposition method”, Journal of Inverse and Ill-posed Problems, 2022  crossref
    3. Polyakova A.P., “Singular Value Decomposition of a Normal Radon Transform Operator Acting on 3D Symmetric 2-Tensor Fields”, Sib. Electron. Math. Rep., 18:2 (2021), 1572–1595  mathnet  crossref  mathscinet  isi  scopus
    4. I E Svetov, A P Polyakova, “The method of approximate inverse for the normal Radon transform operator”, J. Phys.: Conf. Ser., 1715:1 (2021), 012048  crossref
    5. A P Polyakova, I E Svetov, “On a singular value decomposition of the normal Radon transform operator acting on 3D 2-tensor fields”, J. Phys.: Conf. Ser., 1715:1 (2021), 012041  crossref
    6. Anna P. Polyakova, Ivan E. Svetov, Bernadette N. Hahn, Lecture Notes in Computer Science, 11974, Numerical Computations: Theory and Algorithms, 2020, 446  crossref
    7. Ivan E. Svetov, Svetlana V. Maltseva, Alfred K. Louis, Lecture Notes in Computer Science, 11974, Numerical Computations: Theory and Algorithms, 2020, 487  crossref
    8. Shidong Sun, Lei Qin, Hongwei Ren, “Effect of Different Electrode Numbers on the Image Quality of Concrete Damage in Electrical Resistance Tomography”, IOP Conf. Ser.: Earth Environ. Sci., 283:1 (2019), 012005  crossref
    9. L. Liu, Z. Y. Fang, Y. P. Wu, X. P. Lai, P. Wang, K.-I. Song, “Experimental investigation of solid-liquid two-phase flow in cemented rock-tailings backfill using Electrical Resistance Tomography”, Constr. Build. Mater., 175 (2018), 267–276  crossref  isi  scopus
    10. A. P. Polyakova, I. E. Svetov, “Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform”, Sib. Electron. Math. Rep., 13 (2016), 154–174  crossref  isi
    11. I. E. Svetov, S. V. Maltseva, A. P. Polyakova, “Approximate inversion of operators of two-dimensional vector tomography”, Sib. Electron. Math. Rep., 13 (2016), 607–623  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:265
    Full-text PDF :144
    References:55
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025