Abstract:
We propose a numerical solution of reconstruction problem of a potential vector field in a ball from the known values of the normal Radon transform. The algorithm is based on the method of truncated singular value decomposition. Numerical simulations confirm that the proposed method yields good results of reconstruction of potential vector fields.
Keywords:
vector tomography, potential vector field, approximation, normal Radon transform, truncated singular value decomposition, orthogonal polynomials.
Citation:
A. P. Polyakova, I. E. Svetov, “Numerical solution of reconstruction problem of a potential vector field in a ball from its normal Radon transform”, Sib. Zh. Ind. Mat., 18:3 (2015), 63–75; J. Appl. Industr. Math., 9:4 (2015), 547–558
\Bibitem{PolSve15}
\by A.~P.~Polyakova, I.~E.~Svetov
\paper Numerical solution of reconstruction problem of a~potential vector field in a~ball from its normal Radon transform
\jour Sib. Zh. Ind. Mat.
\yr 2015
\vol 18
\issue 3
\pages 63--75
\mathnet{http://mi.mathnet.ru/sjim895}
\crossref{https://doi.org/10.17377/sibjim.2015.18.307}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549841}
\elib{https://elibrary.ru/item.asp?id=23877192}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 4
\pages 547--558
\crossref{https://doi.org/10.1134/S1990478915040110}
Linking options:
https://www.mathnet.ru/eng/sjim895
https://www.mathnet.ru/eng/sjim/v18/i3/p63
This publication is cited in the following 11 articles:
L Kunyansky, E McDugald, B Shearer, “Weighted Radon transforms of vector fields, with applications to magnetoacoustoelectric tomography”, Inverse Problems, 39:6 (2023), 065014
Anna P. Polyakova, Ivan E. Svetov, “A numerical solution of the dynamic vector tomography problem using the truncated singular value decomposition method”, Journal of Inverse and Ill-posed Problems, 2022
Polyakova A.P., “Singular Value Decomposition of a Normal Radon Transform Operator Acting on 3D Symmetric 2-Tensor Fields”, Sib. Electron. Math. Rep., 18:2 (2021), 1572–1595
I E Svetov, A P Polyakova, “The method of approximate inverse for the normal Radon transform operator”, J. Phys.: Conf. Ser., 1715:1 (2021), 012048
A P Polyakova, I E Svetov, “On a singular value decomposition of the normal Radon transform operator acting on 3D 2-tensor fields”, J. Phys.: Conf. Ser., 1715:1 (2021), 012041
Anna P. Polyakova, Ivan E. Svetov, Bernadette N. Hahn, Lecture Notes in Computer Science, 11974, Numerical Computations: Theory and Algorithms, 2020, 446
Ivan E. Svetov, Svetlana V. Maltseva, Alfred K. Louis, Lecture Notes in Computer Science, 11974, Numerical Computations: Theory and Algorithms, 2020, 487
Shidong Sun, Lei Qin, Hongwei Ren, “Effect of Different Electrode Numbers on the Image Quality of Concrete Damage in Electrical Resistance Tomography”, IOP Conf. Ser.: Earth Environ. Sci., 283:1 (2019), 012005
L. Liu, Z. Y. Fang, Y. P. Wu, X. P. Lai, P. Wang, K.-I. Song, “Experimental investigation of solid-liquid two-phase flow in cemented rock-tailings backfill using Electrical Resistance Tomography”, Constr. Build. Mater., 175 (2018), 267–276
A. P. Polyakova, I. E. Svetov, “Numerical solution of reconstruction problem of a potential symmetric 2-tensor field in a ball from its normal Radon transform”, Sib. Electron. Math. Rep., 13 (2016), 154–174
I. E. Svetov, S. V. Maltseva, A. P. Polyakova, “Approximate inversion of operators of two-dimensional vector tomography”, Sib. Electron. Math. Rep., 13 (2016), 607–623