Abstract:
The inhomogeneous boundary value problem for equations of mixture of compressible viscous fluids which is steady flow around an obstacle model are considered. Problem formulation makes it possible to vary by shape of obstacles. Well-posedness of such problem for class of strong solutions is proved. The results established in the paper can be used to make an analysis of an optimal shape for obstacles in compressible flow of mixture of viscous fluids.
Keywords:
boundary value problem, mixture of viscous compressible fluids, strong solution, flow around an obstacle.
Citation:
A. A. Zhalnina, N. A. Kucher, “On well-posedness of inhomogeneous boundary value problem for equations of mixtures of compressible viscous fluids”, Sib. Zh. Ind. Mat., 18:3 (2015), 26–39; J. Appl. Industr. Math., 9:4 (2015), 598–610
\Bibitem{ZhaKuc15}
\by A.~A.~Zhalnina, N.~A.~Kucher
\paper On well-posedness of inhomogeneous boundary value problem for equations of mixtures of compressible viscous fluids
\jour Sib. Zh. Ind. Mat.
\yr 2015
\vol 18
\issue 3
\pages 26--39
\mathnet{http://mi.mathnet.ru/sjim891}
\crossref{https://doi.org/10.17377/sibjim.2015.18.303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549837}
\elib{https://elibrary.ru/item.asp?id=23877188}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 4
\pages 598--610
\crossref{https://doi.org/10.1134/S199047891504016X}
Linking options:
https://www.mathnet.ru/eng/sjim891
https://www.mathnet.ru/eng/sjim/v18/i3/p26
This publication is cited in the following 4 articles:
A A Zhalnina, N A Kucher, “Spatial flow around an obstacle of a mixture of compressible viscous fluids”, J. Phys.: Conf. Ser., 1268:1 (2019), 012023
A. A. Zhalnina, N. A. Kucher, “Dependence on the domain of solutions to a boundary value problem for the equations of mixtures of compressible viscous fluids”, J. Appl. Industr. Math., 11:1 (2017), 145–155
A. A. Zhalnina, “Vliyanie formy oblasti na reshenie zadachi ob obtekanii prepyatstviya potokom smesi vyazkikh szhimaemykh zhidkostei”, Vestn. Tomsk. gos. un-ta. Matem. i mekh., 2016, no. 5(43), 5–20
Nikolay Kucher, Nikolay Kucher, Aleksandra Zhalnina, Aleksandra Zhalnina, “SHAPE DIFFERENTIABILITY OF DRAG FUNCTIONAL AND BOUNDARY VALUE PROBLEM SOLUTIONS FOR FLUID MIXTURE EQUATIONS”, Science Evolution, 2016, 41