Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2015, Volume 18, Number 2, Pages 74–84
DOI: https://doi.org/10.17377/sibjim.2015.18.208
(Mi sjim884)
 

This article is cited in 5 scientific papers (total in 5 papers)

An equilibrium problem for an elastic plate with an inclined crack on the boundary of a rigid inclusion

N. V. Neustroeva

North-Eastern Federal University (NEFU), Institute of Mathematics and Informatics, 48 Kulakovskogo st., 677000 Yakutsk
Full-text PDF (665 kB) Citations (5)
References:
Abstract: We consider an equilibrium problem for a Kirchhoff–Love elastic plate with an inclined crack on the boundary of a rigid inclusion. The nonpenetration conditions are considered at the crack faces in the form of equalities and inequalities. On the boundary of the rigid inclusion, some identity holds describing the action of the external forces on the rigid part of the plate. The variational statement of the problem is studied, and an equivalent boundary value problem is formulated. For a family of problems about a plate with inclined crack on the boundary, we analyze the passage to the limit as the rigidity parameter of the inclusion tends to infinity.
Keywords: inclined crack, rigid inclusion, plate, variational inequality.
Received: 25.12.2014
English version:
Journal of Applied and Industrial Mathematics, 2015, Volume 9, Issue 3, Pages 402–411
DOI: https://doi.org/10.1134/S1990478915030114
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: Russian
Citation: N. V. Neustroeva, “An equilibrium problem for an elastic plate with an inclined crack on the boundary of a rigid inclusion”, Sib. Zh. Ind. Mat., 18:2 (2015), 74–84; J. Appl. Industr. Math., 9:3 (2015), 402–411
Citation in format AMSBIB
\Bibitem{Neu15}
\by N.~V.~Neustroeva
\paper An equilibrium problem for an elastic plate with an inclined crack on the boundary of a~rigid inclusion
\jour Sib. Zh. Ind. Mat.
\yr 2015
\vol 18
\issue 2
\pages 74--84
\mathnet{http://mi.mathnet.ru/sjim884}
\crossref{https://doi.org/10.17377/sibjim.2015.18.208}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549830}
\elib{https://elibrary.ru/item.asp?id=23598679}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 3
\pages 402--411
\crossref{https://doi.org/10.1134/S1990478915030114}
Linking options:
  • https://www.mathnet.ru/eng/sjim884
  • https://www.mathnet.ru/eng/sjim/v18/i2/p74
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025