Abstract:
We study a boundary value problem for the stationary equations of magnetohydrodynamics of a viscous heat-conducting fluid considered under the Dirichlet condition for the velocity and mixed boundary conditions for the electromagnetic field and the temperature. Sufficient conditions are established on the initial data that guarantee the global solvability of this problem and the local uniqueness of its solution.
Keywords:
magnetohydrodynamics, boundary value problem, mixed boundary conditions, solvability, uniqueness.
Citation:
G. V. Alekseev, “Solvability of a boundary value problem for stationary equations of magnetohydrodynamics of a viscous heat-conducting fluid”, Sib. Zh. Ind. Mat., 18:2 (2015), 24–35; J. Appl. Industr. Math., 9:3 (2015), 306–316
\Bibitem{Ale15}
\by G.~V.~Alekseev
\paper Solvability of a~boundary value problem for stationary equations of magnetohydrodynamics of a~viscous heat-conducting fluid
\jour Sib. Zh. Ind. Mat.
\yr 2015
\vol 18
\issue 2
\pages 24--35
\mathnet{http://mi.mathnet.ru/sjim879}
\crossref{https://doi.org/10.17377/sibjim.2015.18.203}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3549825}
\elib{https://elibrary.ru/item.asp?id=23598674}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 3
\pages 306--316
\crossref{https://doi.org/10.1134/S1990478915030023}
Linking options:
https://www.mathnet.ru/eng/sjim879
https://www.mathnet.ru/eng/sjim/v18/i2/p24
This publication is cited in the following 2 articles:
Gennadii Alekseev, Yuliya Spivak, “Stability Estimates of Optimal Solutions for the Steady Magnetohydrodynamics-Boussinesq Equations”, Mathematics, 12:12 (2024), 1912
K. R. Aida-zade, Y. R. Ashrafova, “Calculation of a state of the system of discrete linear processes connected by nonseparated boundary conditions”, J. Appl. Industr. Math., 10:4 (2016), 457–467