Abstract:
For the conjugate-operator model of the heat conduction problem, we construct and justify a discrete analog preserving the structure of the initial model. The justification of convergence is carried out for a difference scheme in the conjugate-operator form. It is shown that the difference scheme converges with second-order accuracy for the cases of discontinuous medium parameters in the Fourier law and nonuniform grids.
Citation:
S. B. Sorokin, “Justification of a discrete analog of the conjugate-operator model of the heat conduction problem”, Sib. Zh. Ind. Mat., 17:4 (2014), 98–110; J. Appl. Industr. Math., 9:1 (2015), 119–131
\Bibitem{Sor14}
\by S.~B.~Sorokin
\paper Justification of a~discrete analog of the conjugate-operator model of the heat conduction problem
\jour Sib. Zh. Ind. Mat.
\yr 2014
\vol 17
\issue 4
\pages 98--110
\mathnet{http://mi.mathnet.ru/sjim863}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364397}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 1
\pages 119--131
\crossref{https://doi.org/10.1134/S1990478915010135}
Linking options:
https://www.mathnet.ru/eng/sjim863
https://www.mathnet.ru/eng/sjim/v17/i4/p98
This publication is cited in the following 3 articles:
S B Sorokin, A G Maksimova, G G Lazareva, A S Arakcheev, “Numerical implementation of the Lame equation with complex boundary conditions”, J. Phys.: Conf. Ser., 1336:1 (2019), 012016
S. B. Sorokin, “A difference scheme for a conjugate-operator model of the heat conduction problem in the polar coordinates”, Num. Anal. Appl., 10:3 (2017), 244–258
S. B. Sorokin, “A difference scheme for a conjugate-operator model of the heat conduction problem on non-matching grids”, Num. Anal. Appl., 9:4 (2016), 335–345