Abstract:
We suggest an approach to the recovery of a function given in a Riemannian domain with low refraction from the ray integrals of the function. We construct an inversion algorithm with the use of the back-projection operator and the fast Fourier transform. The algorithm is investigated by numerical methods.
Keywords:
tomography, refraction, ray transform, back-projection operator, inversion formula, fast Fourier transform.
Citation:
E. Yu. Derevtsov, S. V. Maltseva, I. E. Svetov, “Approximate recovery of a function given in a domain with low refraction from the ray integrals of the function”, Sib. Zh. Ind. Mat., 17:4 (2014), 48–59; J. Appl. Industr. Math., 9:1 (2015), 36–46
\Bibitem{DerMalSve14}
\by E.~Yu.~Derevtsov, S.~V.~Maltseva, I.~E.~Svetov
\paper Approximate recovery of a~function given in a~domain with low refraction from the ray integrals of the function
\jour Sib. Zh. Ind. Mat.
\yr 2014
\vol 17
\issue 4
\pages 48--59
\mathnet{http://mi.mathnet.ru/sjim858}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364392}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 1
\pages 36--46
\crossref{https://doi.org/10.1134/S1990478915010056}
Linking options:
https://www.mathnet.ru/eng/sjim858
https://www.mathnet.ru/eng/sjim/v17/i4/p48
This publication is cited in the following 3 articles:
E Yu Derevtsov, “On constructing the Riemannian metrics in refraction tomography problems”, J. Phys.: Conf. Ser., 1715:1 (2021), 012033
Maltseva V S. Svetov I.E. Polyakova A.P., “Reconstruction of a Function and Its Singular Support in a Cylinder By Tomographic Data”, Eurasian J. Math. Comput. Appl., 8:2 (2020), 86–97
E. Yu. Derevtsov, S. V. Maltseva, I. E. Svetov, “Priblizhennoe obraschenie operatora luchevogo preobrazovaniya v refraktsionnoi tomografii”, Sib. elektron. matem. izv., 11 (2014), 833–856