Abstract:
We consider new identities and representations of solutions to second-order differential equations connected with the Hopf–Cole transformation.
Citation:
Yu. E. Anikonov, N. B. Ayupova, “The Hopf–Cole transformation and multidimensional representations of solutions to evolution equations”, Sib. Zh. Ind. Mat., 17:4 (2014), 31–37; J. Appl. Industr. Math., 9:1 (2015), 11–17
\Bibitem{AniAyu14}
\by Yu.~E.~Anikonov, N.~B.~Ayupova
\paper The Hopf--Cole transformation and multidimensional representations of solutions to evolution equations
\jour Sib. Zh. Ind. Mat.
\yr 2014
\vol 17
\issue 4
\pages 31--37
\mathnet{http://mi.mathnet.ru/sjim856}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3364390}
\transl
\jour J. Appl. Industr. Math.
\yr 2015
\vol 9
\issue 1
\pages 11--17
\crossref{https://doi.org/10.1134/S1990478915010020}
Linking options:
https://www.mathnet.ru/eng/sjim856
https://www.mathnet.ru/eng/sjim/v17/i4/p31
This publication is cited in the following 5 articles:
Ying Chen, Xi Liu, Zhenhua Chai, Baochang Shi, “A Cole–Hopf Transformation Based Fourth-Order Multiple-Relaxation-Time Lattice Boltzmann Model for the Coupled Burgers' Equations”, J Sci Comput, 103:1 (2025)
Fumei Rong, Qianhuan Li, Baochang Shi, Zhenhua Chai, “A lattice Boltzmann model based on Cole-Hopf transformation for N-dimensional coupled Burgers' equations”, Computers & Mathematics with Applications, 134 (2023), 101
Yu. E. Anikonov, M. V. Neshchadim, “Generalized Cole–Hopf transformation”, J. Appl. Industr. Math., 12:3 (2018), 409–416
Yu. E. Anikonov, N. B. Ayupova, M. V. Neshchadim, “Ray method and questions of identification of the elasticity theory equations”, J. Math. Sci., 246:6 (2020), 738–754
Yu. E. Anikonov, N. B. Ayupova, “Ray expansions and identities for the second order equations with applications to inverse problems”, J. Math. Sci., 231:2 (2018), 111–123