Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2014, Volume 17, Number 1, Pages 65–77 (Mi sjim820)  

This article is cited in 2 scientific papers (total in 2 papers)

Optimal control of the rigidity of an inclusion in an elastic body

P. V. Karaul'nyi

North-Eastern Federal University, Institute for Mathematics and Informatics, 48 Kulakovskogo st., 677000 Yakutsk
Full-text PDF (257 kB) Citations (2)
References:
Abstract: A three-dimensional elastic body with an inclusion is considered. There is a crack part of which is situated on the boundary of the inclusion. On the crack edges, there are given boundary conditions of the type of equalities and inequalities. We consider optimal control problem that allows to choose the safest inclusion from the standpoint of Griffith's criterion. An existence theorem of a solution to the optimal control problem is proved.
Keywords: crack, elastic inclusion, optimal control, Griffith's criterion.
Received: 28.01.2013
Bibliographic databases:
Document Type: Article
UDC: 539.3
Language: Russian
Citation: P. V. Karaul'nyi, “Optimal control of the rigidity of an inclusion in an elastic body”, Sib. Zh. Ind. Mat., 17:1 (2014), 65–77
Citation in format AMSBIB
\Bibitem{Kar14}
\by P.~V.~Karaul'nyi
\paper Optimal control of the rigidity of an inclusion in an elastic body
\jour Sib. Zh. Ind. Mat.
\yr 2014
\vol 17
\issue 1
\pages 65--77
\mathnet{http://mi.mathnet.ru/sjim820}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379255}
Linking options:
  • https://www.mathnet.ru/eng/sjim820
  • https://www.mathnet.ru/eng/sjim/v17/i1/p65
  • This publication is cited in the following 2 articles:
    1. E. V. Pyatkina, “Optimal control of the shape of a layer shape in the equilibrium problem of elastic bodies with overlapping domains”, J. Appl. Industr. Math., 10:3 (2016), 435–443  mathnet  crossref  crossref  mathscinet  elib
    2. E. V. Pyatkina, “On control problem for two-layers elastic body with a crack”, J. Math. Sci., 230:1 (2018), 159–166  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:382
    Full-text PDF :101
    References:89
    First page:13
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025