Abstract:
We study an optimal control problem for the stationary motion equations of a Jeffreys viscoelastic medium with a Navier slip boundary condition. The control parameter is provided by an external force. We prove the existence of a weak solution minimizing a given cost functional and establish some properties of the solution set to the optimization problem.
Citation:
E. S. Baranovskii, “An optimal control problem for a stationary flow of a Jeffreys medium with slip boundary condition”, Sib. Zh. Ind. Mat., 17:1 (2014), 18–27; J. Appl. Industr. Math., 8:2 (2014), 168–176
\Bibitem{Bar14}
\by E.~S.~Baranovskii
\paper An optimal control problem for a~stationary flow of a~Jeffreys medium with slip boundary condition
\jour Sib. Zh. Ind. Mat.
\yr 2014
\vol 17
\issue 1
\pages 18--27
\mathnet{http://mi.mathnet.ru/sjim815}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379250}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 2
\pages 168--176
\crossref{https://doi.org/10.1134/S1990478914020033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335390900002}
Linking options:
https://www.mathnet.ru/eng/sjim815
https://www.mathnet.ru/eng/sjim/v17/i1/p18
This publication is cited in the following 20 articles:
Param R. Tangsali, Nagaraj N. Katagi, Ashwini Bhat, Manjunath Shettar, “Analysis of Magnetohydrodynamic Free Convection in Micropolar Fluids over a Permeable Shrinking Sheet with Slip Boundary Conditions”, Symmetry, 16:4 (2024), 400
Yang Na, Tianjiao Men, Runmei Du, Yingjie Zhu, “Optimal Control Problems of a Class of Nonlinear Degenerate Parabolic Equations”, Mathematics, 12:14 (2024), 2181
Evgenii S. Baranovskii, Roman V. Brizitskii, Zhanna Yu. Saritskaia, “Multiplicative Control Problem for the Stationary Mass Transfer Model with Variable Coefficients”, Appl Math Optim, 90:2 (2024)
Evgenii S. Baranovskii, Anastasia A. Domnich, Mikhail A. Artemov, “Mathematical Analysis of the Poiseuille Flow of a Fluid with Temperature-Dependent Properties”, Mathematics, 12:21 (2024), 3337
Semyen Leonidovich Podvalny, Vyacheslav Vasilyevich Provotorov, Van Nguyen Hoang, 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), 2022, 125
Asha S. Kotnurkar, Joonabi Beleri, Irfan Anjum Badruddin, Khaleed H.M.T., Sarfaraz Kamangar, Nandalur Ameer Ahammad, “Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel”, Mathematics, 10:10 (2022), 1701
Mekheimer Kh.S., Shankar B.M., Ramadan Sh.F., Mallik H.E., Mohamed M.S., “On the Stability of Convection in a Non-Newtonian Vertical Fluid Layer in the Presence of Gold Nanoparticles: Drug Agent For Thermotherapy”, Mathematics, 9:11 (2021), 1302
E. S. Baranovskii, “Optimal boundary control of nonlinear-viscous fluid flows”, Sb. Math., 211:4 (2020), 505–520
Domnich A.A., Baranovskii E.S., Artemov M.A., Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 1479, IOP Publishing Ltd, 2020
A. Alessandri, P. Bagnerini, R. Cianci, M. Gaggero, “Optimal propagating fronts using Hamilton-Jacobi equations”, Mathematics, 7:11 (2019), 1122
E. S. Baranovskii, “Steady flows of an Oldroyd fluid with threshold slip”, Commun. Pure Appl. Anal, 18:2 (2019), 735–750
E. S. Baranovskii, “On flows of viscoelastic fluids under threshold-slip boundary conditions”, International Conference Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 973, IOP Publishing Ltd, 2018, UNSP 012051
E. S. Baranovskii, “On weak solutions to evolution equations of viscoelastic fluid flows”, J. Appl. Industr. Math., 11:2 (2017), 174–184
E. S. Baranovskii, M. A. Artemov, “Global existence results for Oldroyd fluids with wall slip”, Acta Appl. Math., 147:1 (2017), 197–210
M. A. Artemov, G. G. Berdzenishvili, “Global well-posedness for a 2-D viscoelastic fluid model”, Appl. Math. Sci., 10:54 (2016), 2661–2670
M. A. Artemov, E. S. Baranovskii, “Granichnye zadachi dlya uravnenii dvizheniya polimernykh zhidkostei c nelineinym usloviem proskalzyvaniya vdol tverdykh stenok”, Tr. IMM UrO RAN, 21, no. 1, 2015, 14–24
Baranovskii E.S., “Existence Results For Regularized Equations of Second-Grade Fluids With Wall Slip”, Electron. J. Qual. Theory Differ., 2015, no. 91, 1–12
M. A. Artemov, E. S. Baranovskii, “O globalnoi razreshimosti nachalno-kraevykh zadach dlya uravneniya dvizheniya vyazkouprugoi sredy”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov VII mezhdunarodnoi konferentsii PMTUKT-2014, Nauchnaya kniga, Voronezh, 2014, 5–8
A. V. Kozlova, “Ob odnom prilozhenii integro-differentsialnykh uravnenii Volterra”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov VII mezhdunarodnoi konferentsii PMTUKT-2014, Nauchnaya kniga, Voronezh, 2014, 198–199