Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2014, Volume 17, Number 1, Pages 18–27 (Mi sjim815)  

This article is cited in 20 scientific papers (total in 20 papers)

An optimal control problem for a stationary flow of a Jeffreys medium with slip boundary condition

E. S. Baranovskii

Voronezh State University of Engineering Technologies, 19 Revolutsii av., 394036 Voronezh
References:
Abstract: We study an optimal control problem for the stationary motion equations of a Jeffreys viscoelastic medium with a Navier slip boundary condition. The control parameter is provided by an external force. We prove the existence of a weak solution minimizing a given cost functional and establish some properties of the solution set to the optimization problem.
Keywords: optimal control, flow control, non-Newtonian fluid, viscoelastic medium, Jeffreys model, Navier–Stokes equations, Navier slip boundary condition, weak solution, Galerkin method.
Received: 28.08.2013
English version:
Journal of Applied and Industrial Mathematics, 2014, Volume 8, Issue 2, Pages 168–176
DOI: https://doi.org/10.1134/S1990478914020033
Bibliographic databases:
Document Type: Article
UDC: 517.958+531.32
Language: Russian
Citation: E. S. Baranovskii, “An optimal control problem for a stationary flow of a Jeffreys medium with slip boundary condition”, Sib. Zh. Ind. Mat., 17:1 (2014), 18–27; J. Appl. Industr. Math., 8:2 (2014), 168–176
Citation in format AMSBIB
\Bibitem{Bar14}
\by E.~S.~Baranovskii
\paper An optimal control problem for a~stationary flow of a~Jeffreys medium with slip boundary condition
\jour Sib. Zh. Ind. Mat.
\yr 2014
\vol 17
\issue 1
\pages 18--27
\mathnet{http://mi.mathnet.ru/sjim815}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3379250}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 2
\pages 168--176
\crossref{https://doi.org/10.1134/S1990478914020033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335390900002}
Linking options:
  • https://www.mathnet.ru/eng/sjim815
  • https://www.mathnet.ru/eng/sjim/v17/i1/p18
  • This publication is cited in the following 20 articles:
    1. Param R. Tangsali, Nagaraj N. Katagi, Ashwini Bhat, Manjunath Shettar, “Analysis of Magnetohydrodynamic Free Convection in Micropolar Fluids over a Permeable Shrinking Sheet with Slip Boundary Conditions”, Symmetry, 16:4 (2024), 400  crossref
    2. Yang Na, Tianjiao Men, Runmei Du, Yingjie Zhu, “Optimal Control Problems of a Class of Nonlinear Degenerate Parabolic Equations”, Mathematics, 12:14 (2024), 2181  crossref
    3. Evgenii S. Baranovskii, Roman V. Brizitskii, Zhanna Yu. Saritskaia, “Multiplicative Control Problem for the Stationary Mass Transfer Model with Variable Coefficients”, Appl Math Optim, 90:2 (2024)  crossref
    4. Evgenii S. Baranovskii, Anastasia A. Domnich, Mikhail A. Artemov, “Mathematical Analysis of the Poiseuille Flow of a Fluid with Temperature-Dependent Properties”, Mathematics, 12:21 (2024), 3337  crossref
    5. Semyen Leonidovich Podvalny, Vyacheslav Vasilyevich Provotorov, Van Nguyen Hoang, 2022 4th International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), 2022, 125  crossref
    6. Asha S. Kotnurkar, Joonabi Beleri, Irfan Anjum Badruddin, Khaleed H.M.T., Sarfaraz Kamangar, Nandalur Ameer Ahammad, “Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel”, Mathematics, 10:10 (2022), 1701  crossref
    7. Mekheimer Kh.S., Shankar B.M., Ramadan Sh.F., Mallik H.E., Mohamed M.S., “On the Stability of Convection in a Non-Newtonian Vertical Fluid Layer in the Presence of Gold Nanoparticles: Drug Agent For Thermotherapy”, Mathematics, 9:11 (2021), 1302  crossref  mathscinet  isi  scopus
    8. E. S. Baranovskii, “Optimal boundary control of nonlinear-viscous fluid flows”, Sb. Math., 211:4 (2020), 505–520  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Domnich A.A., Baranovskii E.S., Artemov M.A., Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 1479, IOP Publishing Ltd, 2020  crossref  isi  scopus
    10. A. Alessandri, P. Bagnerini, R. Cianci, M. Gaggero, “Optimal propagating fronts using Hamilton-Jacobi equations”, Mathematics, 7:11 (2019), 1122  crossref  isi  scopus
    11. E. S. Baranovskii, “Steady flows of an Oldroyd fluid with threshold slip”, Commun. Pure Appl. Anal, 18:2 (2019), 735–750  crossref  mathscinet  zmath  isi  scopus
    12. E. S. Baranovskii, “On flows of viscoelastic fluids under threshold-slip boundary conditions”, International Conference Applied Mathematics, Computational Science and Mechanics: Current Problems, Journal of Physics Conference Series, 973, IOP Publishing Ltd, 2018, UNSP 012051  crossref  isi  scopus
    13. E. S. Baranovskii, “On weak solutions to evolution equations of viscoelastic fluid flows”, J. Appl. Industr. Math., 11:2 (2017), 174–184  mathnet  crossref  crossref  elib
    14. E. S. Baranovskii, M. A. Artemov, “Global existence results for Oldroyd fluids with wall slip”, Acta Appl. Math., 147:1 (2017), 197–210  crossref  mathscinet  zmath  isi  scopus
    15. M. A. Artemov, G. G. Berdzenishvili, “Global well-posedness for a 2-D viscoelastic fluid model”, Appl. Math. Sci., 10:54 (2016), 2661–2670  crossref  elib  scopus
    16. M. A. Artemov, E. S. Baranovskii, “Granichnye zadachi dlya uravnenii dvizheniya polimernykh zhidkostei c nelineinym usloviem proskalzyvaniya vdol tverdykh stenok”, Tr. IMM UrO RAN, 21, no. 1, 2015, 14–24  mathnet  mathscinet  elib
    17. Baranovskii E.S., “Existence Results For Regularized Equations of Second-Grade Fluids With Wall Slip”, Electron. J. Qual. Theory Differ., 2015, no. 91, 1–12  crossref  isi
    18. E. A. Lyzhnik, “Effektivnye otsenki reshenii uravnenii dvizheniya vyazkouprugoi zhidkosti”, Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii, 2014, no. 8, 150–151 http://www.rae.ru/upfs/?section=content&op=show_article&article_id=5737  elib
    19. M. A. Artemov, E. S. Baranovskii, “O globalnoi razreshimosti nachalno-kraevykh zadach dlya uravneniya dvizheniya vyazkouprugoi sredy”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov VII mezhdunarodnoi konferentsii PMTUKT-2014, Nauchnaya kniga, Voronezh, 2014, 5–8
    20. A. V. Kozlova, “Ob odnom prilozhenii integro-differentsialnykh uravnenii Volterra”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov VII mezhdunarodnoi konferentsii PMTUKT-2014, Nauchnaya kniga, Voronezh, 2014, 198–199
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:741
    Full-text PDF :137
    References:132
    First page:81
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025