Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2013, Volume 16, Number 4, Pages 131–141 (Mi sjim811)  

Axiradial acoustic eigenoscillations near a thin-walled obstacle in a cylindrical channel with narrowing steps

N. A. Khasanov, S. V. Sukhinin

Lavrent'ev Institute of Hydrodynamics SB RAS, 15 Lavrent'ev av., 630090 Novosibirsk
References:
Abstract: We study the dependence of the eigenfrequencies and eigenfunctions of acoustic axiradial oscillations near a thin-walled obstacle in a channel with narrowing steps of the geometric parameters of the oscillation domain. It is discovered that, near thin-walled cylindrical obstacles, in an inhomogeneous cylindrical channel with two-sided narrowing cylindrical step, the number of the acoustic eigenfrequencies of acoustic axisymmetric oscillations of the gas can increase. We obtain the dependencies of the eigenfrequencies on the geometric parameters of the obstacle and on the inhomogeneities of the channel. We study the dependence of the eigenfrequencies and eigenfunctions of acoustic axiradial oscillations near a thin-walled obstacle in a channel with narrowing steps of the geometric parameters of the oscillation domain. It is discovered that, near thin-walled cylindrical obstacles, in an inhomogeneous cylindrical channel with two-sided narrowing cylindrical step, the number of the acoustic eigenfrequencies of acoustic axisymmetric oscillations of the gas can increase. We obtain the dependencies of the eigenfrequencies on the geometric parameters of the obstacle and on the inhomogeneities of the channel.
Keywords: acoustic eigenoscillations in an unbounded domain, resonance phenomena, spectral properties of a Laplace operator, thin-walled obstacle in channels and tubes.
Received: 01.07.2013
English version:
Journal of Applied and Industrial Mathematics, 2014, Volume 8, Issue 1, Pages 76–85
DOI: https://doi.org/10.1134/S1990478914010086
Bibliographic databases:
Document Type: Article
UDC: 517.947+534.14+534.2
Language: Russian
Citation: N. A. Khasanov, S. V. Sukhinin, “Axiradial acoustic eigenoscillations near a thin-walled obstacle in a cylindrical channel with narrowing steps”, Sib. Zh. Ind. Mat., 16:4 (2013), 131–141; J. Appl. Industr. Math., 8:1 (2014), 76–85
Citation in format AMSBIB
\Bibitem{KhaSuk13}
\by N.~A.~Khasanov, S.~V.~Sukhinin
\paper Axiradial acoustic eigenoscillations near a~thin-walled obstacle in a~cylindrical channel with narrowing steps
\jour Sib. Zh. Ind. Mat.
\yr 2013
\vol 16
\issue 4
\pages 131--141
\mathnet{http://mi.mathnet.ru/sjim811}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3234799}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 1
\pages 76--85
\crossref{https://doi.org/10.1134/S1990478914010086}
Linking options:
  • https://www.mathnet.ru/eng/sjim811
  • https://www.mathnet.ru/eng/sjim/v16/i4/p131
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024