Abstract:
We consider some aspects of the application of the finite element method for the numerical solution of initial boundary value problems for a multidimensional time-fractional diffusion equation. A survey of the existing results is made, efficient algorithms for constructing meshes are discussed, and a number of numerical examples is exposed.
Citation:
A. N. Bondarenko, D. S. Ivashchenko, “Application of the finite element method for inverse problems of anomalous diffusion”, Sib. Zh. Ind. Mat., 16:4 (2013), 29–37; J. Appl. Industr. Math., 8:1 (2014), 1–8
\Bibitem{BonIva13}
\by A.~N.~Bondarenko, D.~S.~Ivashchenko
\paper Application of the finite element method for inverse problems of anomalous diffusion
\jour Sib. Zh. Ind. Mat.
\yr 2013
\vol 16
\issue 4
\pages 29--37
\mathnet{http://mi.mathnet.ru/sjim802}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3234790}
\transl
\jour J. Appl. Industr. Math.
\yr 2014
\vol 8
\issue 1
\pages 1--8
\crossref{https://doi.org/10.1134/S1990478914010013}
Linking options:
https://www.mathnet.ru/eng/sjim802
https://www.mathnet.ru/eng/sjim/v16/i4/p29
This publication is cited in the following 2 articles:
Vitaly A. Likhoshvai, Vladimir P. Golubyatnikov, Tamara M. Khlebodarova, “Limit cycles in models of circular gene networks regulated by negative feedback loops”, BMC Bioinformatics, 21:S11 (2020)
Zh. Li, O. Yu. Imanuvilov, M. Yamamoto, “Uniqueness in inverse boundary value problems for fractional diffusion equations”, Inverse Probl., 32:1 (2016), 015004