Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2013, Volume 16, Number 2, Pages 26–39 (Mi sjim777)  

This article is cited in 2 scientific papers (total in 2 papers)

Differential properties of a generalized solution to a hyperbolic system of first-order differential equations

D. S. Anikonov, S. G. Kazantsev, D. S. Konovalova

Sobolev Institute of Mathematics of SB RAS, 4 Koptyug av., 630090 Novosibirsk, Russia
Full-text PDF (301 kB) Citations (2)
References:
Abstract: We study some questions of the qualitative theory of solutions to differential equations. A Cauchy problem is considered for a hyperbolic system of two first-order differential equations. The right-hand sides of these equations contain discontinuous functions. A generalized solution is defined as a continuous solution to the corresponding system of integral equations. We prove the existence and uniqueness of a generalized solution and study the differential properties of the obtained solution. It is in particular established that its first-order partial derivatives are unbounded near certain parts of the characteristic lines. We observe that this property contradicts a common approach of investigation which uses the reduction of a system of two first-order equations to a single second-order equation.
Keywords: hyperbolic equations, discontinuous functions, generalized solutions, differential properties.
Received: 15.04.2013
English version:
Journal of Applied and Industrial Mathematics, 2013, Volume 7, Issue 3, Pages 313–325
DOI: https://doi.org/10.1134/S1990478913030046
Bibliographic databases:
Document Type: Article
UDC: 517.911.5
Language: Russian
Citation: D. S. Anikonov, S. G. Kazantsev, D. S. Konovalova, “Differential properties of a generalized solution to a hyperbolic system of first-order differential equations”, Sib. Zh. Ind. Mat., 16:2 (2013), 26–39; J. Appl. Industr. Math., 7:3 (2013), 313–325
Citation in format AMSBIB
\Bibitem{AniKazKon13}
\by D.~S.~Anikonov, S.~G.~Kazantsev, D.~S.~Konovalova
\paper Differential properties of a~generalized solution to a~hyperbolic system of first-order differential equations
\jour Sib. Zh. Ind. Mat.
\yr 2013
\vol 16
\issue 2
\pages 26--39
\mathnet{http://mi.mathnet.ru/sjim777}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3203339}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 3
\pages 313--325
\crossref{https://doi.org/10.1134/S1990478913030046}
Linking options:
  • https://www.mathnet.ru/eng/sjim777
  • https://www.mathnet.ru/eng/sjim/v16/i2/p26
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:359
    Full-text PDF :113
    References:94
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024