Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2013, Volume 16, Number 1, Pages 138–147 (Mi sjim774)  

This article is cited in 32 scientific papers (total in 32 papers)

On an optimal control problem of thin inclusions shapes in elastic bodies

V. V. Shcherbakov

Lavrentiev Institute of Hydrodynamics of the SDRAS, Novosibirsk, Russia
References:
Abstract: The paper concerns an optimal control problem for a 2D elastic body with a thin rigid inclusion and a crack. The thin rigid inclusion is supposed to delaminate and contain a kink. Inequality type boundary conditions are imposed at the crack faces to provide a mutual nonpenetration between the crack faces. The cost functional characterizes the derivative of the energy function with respect to the crack length. The position of the kink is considered as a control function. The main result is the existence of a solution to the optimal control problem.
Keywords: crack, thin rigid inclusion, nonlinear boundary conditions, optimal control, derivative of energy functional.
Received: 20.09.2012
English version:
Journal of Applied and Industrial Mathematics, 2013, Volume 7, Issue 3, Pages 435–443
DOI: https://doi.org/10.1134/S1990478913030174
Bibliographic databases:
Document Type: Article
UDC: 539.375+517.977
Language: Russian
Citation: V. V. Shcherbakov, “On an optimal control problem of thin inclusions shapes in elastic bodies”, Sib. Zh. Ind. Mat., 16:1 (2013), 138–147; J. Appl. Industr. Math., 7:3 (2013), 435–443
Citation in format AMSBIB
\Bibitem{Shc13}
\by V.~V.~Shcherbakov
\paper On an optimal control problem of thin inclusions shapes in elastic bodies
\jour Sib. Zh. Ind. Mat.
\yr 2013
\vol 16
\issue 1
\pages 138--147
\mathnet{http://mi.mathnet.ru/sjim774}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3203313}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 3
\pages 435--443
\crossref{https://doi.org/10.1134/S1990478913030174}
Linking options:
  • https://www.mathnet.ru/eng/sjim774
  • https://www.mathnet.ru/eng/sjim/v16/i1/p138
  • This publication is cited in the following 32 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024