Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2013, Volume 16, Number 1, Pages 138–147 (Mi sjim774)  

This article is cited in 32 scientific papers (total in 32 papers)

On an optimal control problem of thin inclusions shapes in elastic bodies

V. V. Shcherbakov

Lavrentiev Institute of Hydrodynamics of the SDRAS, Novosibirsk, Russia
References:
Abstract: The paper concerns an optimal control problem for a 2D elastic body with a thin rigid inclusion and a crack. The thin rigid inclusion is supposed to delaminate and contain a kink. Inequality type boundary conditions are imposed at the crack faces to provide a mutual nonpenetration between the crack faces. The cost functional characterizes the derivative of the energy function with respect to the crack length. The position of the kink is considered as a control function. The main result is the existence of a solution to the optimal control problem.
Keywords: crack, thin rigid inclusion, nonlinear boundary conditions, optimal control, derivative of energy functional.
Received: 20.09.2012
English version:
Journal of Applied and Industrial Mathematics, 2013, Volume 7, Issue 3, Pages 435–443
DOI: https://doi.org/10.1134/S1990478913030174
Bibliographic databases:
Document Type: Article
UDC: 539.375+517.977
Language: Russian
Citation: V. V. Shcherbakov, “On an optimal control problem of thin inclusions shapes in elastic bodies”, Sib. Zh. Ind. Mat., 16:1 (2013), 138–147; J. Appl. Industr. Math., 7:3 (2013), 435–443
Citation in format AMSBIB
\Bibitem{Shc13}
\by V.~V.~Shcherbakov
\paper On an optimal control problem of thin inclusions shapes in elastic bodies
\jour Sib. Zh. Ind. Mat.
\yr 2013
\vol 16
\issue 1
\pages 138--147
\mathnet{http://mi.mathnet.ru/sjim774}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3203313}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 3
\pages 435--443
\crossref{https://doi.org/10.1134/S1990478913030174}
Linking options:
  • https://www.mathnet.ru/eng/sjim774
  • https://www.mathnet.ru/eng/sjim/v16/i1/p138
  • This publication is cited in the following 32 articles:
    1. N. A. Nikolaeva, “Zadacha o ravnovesii uprugogo tela s treschinoi i tonkimi vklyucheniyami, kotorye sopryazheny mezhdu soboi”, Dalnevost. matem. zhurn., 24:1 (2024), 73–95  mathnet  crossref
    2. E. V. Pyatkina, “Ravnovesie trekhsloinoi plastiny s treschinoi”, Sib. zhurn. industr. matem., 25:1 (2022), 105–120  mathnet  crossref  mathscinet
    3. Natalia Nikolaeva, “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev, 2528, “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev, 2022, 020030  crossref
    4. E. V. Pyatkina, “Equilibrium of a Three-Layer Plate with a Crack”, J. Appl. Ind. Math., 16:1 (2022), 122  crossref
    5. A. M. Khludnev, T. S. Popova, “The junction problem for two weakly curved inclusions in an elastic body”, Siberian Math. J., 61:4 (2020), 743–754  mathnet  crossref  crossref  isi  elib
    6. Khludnev A.M., “On Modeling Thin Inclusions in Elastic Bodies With a Damage Parameter”, Math. Mech. Solids, 24:9 (2019), 2742–2753  crossref  mathscinet  isi  scopus
    7. A. M. Khludnev, T. S. Popova, “Zadacha sopryazheniya uprugogo vklyucheniya Timoshenko i poluzhestkogo vklyucheniya”, Matematicheskie zametki SVFU, 25:1 (2018), 73–89  mathnet  crossref  elib
    8. A. M. Khludnev, “Equilibrium of an elastic body with closely spaced thin inclusions”, Comput. Math. Math. Phys., 58:10 (2018), 1660–1672  mathnet  crossref  crossref  isi  elib
    9. N. Lazarev, N. Neustroeva, “Optimal control of rigidity parameter of elastic inclusions in composite plate with a crack”, Mathematics and Computing (ICMC 2018), Springer Proceedings in Mathematics & Statistics, 253, eds. D. Ghosh, D. Giri, R. Mohapatra, K. Sakurai, E. Savas, T. Som, Springer, 2018, 67–77  crossref  mathscinet  isi  scopus
    10. A. M. Khludnev, “On modeling elastic bodies with defects”, Sib. Electron. Math. Rep., 15 (2018), 153–166  mathnet  crossref  mathscinet  zmath  isi  scopus
    11. A. M. Khludnev, “Asymptotics of anisotropic weakly curved inclusions in an elastic body”, J. Appl. Industr. Math., 11:1 (2017), 88–98  mathnet  crossref  crossref  mathscinet  elib
    12. V. A. Puris, “The conjugation problem for thin elastic and rigid inclusions in an elastic body”, J. Appl. Industr. Math., 11:3 (2017), 444–452  mathnet  crossref  crossref  elib
    13. A. M. Khludnev, T. S. Popova, “Timoshenko inclusions in elastic bodies crossing an external boundary at zero angle”, Acta Mech. Solida Sin., 30:3 (2017), 327–333  crossref  mathscinet  isi  scopus
    14. E. Rudoy, “On numerical solving a rigid inclusions problem in 2D elasticity”, ZAMM Z. Angew. Math. Phys., 68:1 (2017), 19  crossref  mathscinet  zmath  isi  scopus
    15. A. M. Khludnev, T. S. Popova, “On Crack Propagations in Elastic Bodies With Thin Inclusions”, Sib. Electron. Math. Rep., 14 (2017), 586–599  mathnet  crossref  mathscinet  zmath  isi  scopus
    16. A. Khludnev, “Rigidity parameter identification for thin inclusions located inside elastic bodies”, J. Optim. Theory Appl., 172:1 (2017), 281–297  crossref  mathscinet  zmath  isi  scopus
    17. I. V. Frankina, “Optimal control of the rigid layer size of the construction”, J. Math. Sci., 237:4 (2019), 521–529  mathnet  crossref  crossref
    18. E. M. Rudoy, “Numerical solution of an equilibrium problem for an elastic body with a delaminated thin rigid inclusion”, J. Appl. Industr. Math., 10:2 (2016), 264–276  mathnet  crossref  crossref  mathscinet  elib
    19. E. V. Pyatkina, “Optimal control of the shape of a layer shape in the equilibrium problem of elastic bodies with overlapping domains”, J. Appl. Industr. Math., 10:3 (2016), 435–443  mathnet  crossref  crossref  mathscinet  elib
    20. N. P. Lazarev, “Optimalnoe upravlenie razmerom zhestkogo vklyucheniya v zadache o ravnovesii neodnorodnogo trekhmernogo tela s treschinoi”, Matematicheskie zametki SVFU, 23:2 (2016), 51–64  mathnet  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:725
    Full-text PDF :192
    References:80
    First page:19
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025