Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2013, Volume 16, Number 1, Pages 10–20 (Mi sjim762)  

This article is cited in 8 scientific papers (total in 8 papers)

Recovery of a boundary function from observation data for the surface wave propagation problem in an open basin

E. V. Dementyeva, E. D. Karepova, V. V. Shaidurov

Institute of Computational Modeling of the SDRAS, Krasnoyarsk, Russia
Full-text PDF (719 kB) Citations (8)
References:
Abstract: The iterative numerical method of recovery of the unknown boundary function describing the ocean influence on the open boundary of a computational domain is proposed. The algorithm is based on the method for solving inverse problems by adjoint equations and optimal control methods. The algorithm is tested on a model problem for the basin of the Sea of Okhotsk.
Keywords: shallow water equations, finite element method, inverse problem.
Received: 17.08.2011
Revised: 19.12.2012
Bibliographic databases:
Document Type: Article
UDC: 519.633
Language: Russian
Citation: E. V. Dementyeva, E. D. Karepova, V. V. Shaidurov, “Recovery of a boundary function from observation data for the surface wave propagation problem in an open basin”, Sib. Zh. Ind. Mat., 16:1 (2013), 10–20
Citation in format AMSBIB
\Bibitem{DemKarSha13}
\by E.~V.~Dementyeva, E.~D.~Karepova, V.~V.~Shaidurov
\paper Recovery of a~boundary function from observation data for the surface wave propagation problem in an open basin
\jour Sib. Zh. Ind. Mat.
\yr 2013
\vol 16
\issue 1
\pages 10--20
\mathnet{http://mi.mathnet.ru/sjim762}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3203301}
Linking options:
  • https://www.mathnet.ru/eng/sjim762
  • https://www.mathnet.ru/eng/sjim/v16/i1/p10
  • This publication is cited in the following 8 articles:
    1. Agoshkov I V., Zalesny V.B., Sheloput T.O., “Variational Data Assimilation in Problems of Modeling Hydrophysical Fields in Open Water Areas”, Izv. Atmos. Ocean. Phys., 56:3 (2020), 253–267  crossref  isi  scopus
    2. R. V. Brizitskii, Zh. Yu. Saritskaya, “Inverse coefficient problems for a non-linear convection–diffusion–reaction equation”, Izv. Math., 82:1 (2018), 14–30  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    3. R. V. Brizitskii, Zh. Yu. Saritskaya, “Boundary control problem for a nonlinear convection-diffusion-reaction equation”, Comput. Math. Math. Phys., 58:12 (2018), 2053–2063  mathnet  crossref  crossref  isi  elib
    4. V. I. Agoshkov, T. O. Sheloput, “The study and numerical solution of some inverse problems in simulation of hydrophysical fields in water areas with ‘liquid’ boundaries”, Russ. J. Numer. Anal. Math. Model, 32:3 (2017), 147–164  crossref  mathscinet  zmath  isi  scopus
    5. V. I. Agoshkov, “Statement and study of some inverse problems in modelling of hydrophysical fields for water areas with ‘liquid’ boundaries”, Russ. J. Numer. Anal. Math. Model, 32:2 (2017), 73–90  crossref  mathscinet  zmath  isi  scopus
    6. G. V. Alekseev, R. V. Brizitskii, Zh. Yu. Saritskaya, “Stability estimates of solutions to extremal problems for a nonlinear convection-diffusion-reaction equation”, J. Appl. Industr. Math., 10:2 (2016), 155–167  mathnet  crossref  crossref  mathscinet  elib
    7. R. V. Brizitskii, Zh. Yu. Saritskaya, “Stability of solutions to extremum problems for the nonlinear convection-diffusion-reaction equation with the Dirichlet condition”, Comput. Math. Math. Phys., 56:12 (2016), 2011–2022  mathnet  crossref  crossref  isi  elib
    8. Dement'eva E.V., Karepova E.D., Shaidurov V.V., “Assimilation of Observation Data in the Problem of Surface Wave Propagation in a Water Area With An Open Boundary”, Russ. J. Numer. Anal. Math. Model, 29:1 (2014), 13–23  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:571
    Full-text PDF :168
    References:95
    First page:15
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025