Loading [MathJax]/jax/output/CommonHTML/jax.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2012, Volume 15, Number 4, Pages 90–101 (Mi sjim755)  

This article is cited in 7 scientific papers (total in 7 papers)

A numerical method for solving the Dirichlet problem for the wave equation

S. I. Kabanikhina, O. I. Krivorot'kob

a Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: A numerical method for solving the Dirichlet problem for the wave equation in the two-dimensional space is constructed. An analysis of the ill-posedness of the problem is carried out and a reguralization algorthm is constructed. The first step in the regularization of the problem consists in expansion in a Forier series with respect to one of the variables and passage to a finite sequence of Dirichlet problems for the wave equation in the one-dimensional space. Each of the Dirichlet problems obtained for the wave equation in the one-dimensional space is reduced to the inverse problem Aq=f to some direct (correct) problem. We accomplish an analysis of the ill-posedness degree of the inverse problem on the basis of the study of the nature of the decay of the singular values of A and its discrete analog Amn. For relatively small values m and n, we develop a numerical algorithm for constructing r-solutions to the inverse problem. For the general case, we apply an optimization method for solving the inverse problem. The results of numerical calculations are given.
Keywords: Dirichlet problem, wave equation, ill-posedness degree, singular value decomposition.
Received: 18.06.2012
English version:
Journal of Applied and Industrial Mathematics, 2013, Volume 7, Issue 2, Pages 187–198
DOI: https://doi.org/10.1134/S1990478913020075
Bibliographic databases:
Document Type: Article
UDC: 517.9+519.6
Language: Russian
Citation: S. I. Kabanikhin, O. I. Krivorot'ko, “A numerical method for solving the Dirichlet problem for the wave equation”, Sib. Zh. Ind. Mat., 15:4 (2012), 90–101; J. Appl. Industr. Math., 7:2 (2013), 187–198
Citation in format AMSBIB
\Bibitem{KabKri12}
\by S.~I.~Kabanikhin, O.~I.~Krivorot'ko
\paper A numerical method for solving the Dirichlet problem for the wave equation
\jour Sib. Zh. Ind. Mat.
\yr 2012
\vol 15
\issue 4
\pages 90--101
\mathnet{http://mi.mathnet.ru/sjim755}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112602}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 2
\pages 187--198
\crossref{https://doi.org/10.1134/S1990478913020075}
Linking options:
  • https://www.mathnet.ru/eng/sjim755
  • https://www.mathnet.ru/eng/sjim/v15/i4/p90
  • This publication is cited in the following 7 articles:
    1. A. V Glushak, “ON SOLVABILITY OF INITIAL AND BOUNDARY VALUE PROBLEMS FOR ABSTRACT FUNCTIONAL-DIFFERENTIAL EULER–POISSON–DARBOUX EQUATIONS”, Differencialʹnye uravneniâ, 60:3 (2024), 346  crossref
    2. A. V. Glushak, “Uniqueness Criterion for the Solution of Boundary-Value Problems for the Abstract Euler–Poisson–Darboux Equation on a Finite Interval”, Math. Notes, 109:6 (2021), 867–875  mathnet  crossref  crossref  isi  elib
    3. Glushak A.V., “On the Solvability of Boundary Value Problems For An Abstract Bessel-Struve Equation”, Differ. Equ., 55:8 (2019), 1069–1076  crossref  mathscinet  zmath  isi  scopus
    4. V. I. Vasilev, A. M. Kardashevskii, V. V. Popov, “Iteratsionnyi metod resheniya zadachi Dirikhle i ee modifikatsii”, Matematicheskie zametki SVFU, 24:3 (2017), 38–51  mathnet  crossref  elib
    5. Holec M., Cotelo M., Velarde P., Liska R., “Application of Discontinuous Galerkin Adaptive Mesh and Order Refinement Method to Energy Transport and Conservation Equation in Radiation-Hydrodynamics”, Proceedings of the 1St Pan-American Congress on Computational Mechanics and Xi Argentine Congress on Computational Mechanics, eds. Idelsohn S., Sonzogni V., Coutinho A., Cruchaga M., Lew A., Cerrolaza M., Int Center Numerical Methods Engineering, 2015, 919–930  isi
    6. Kabanikhin S.I., Krivorotko O.I., “Coupled Inverse Problems and Visualization of Atmosphere-Ocean System”, Coupled Problems in Science and Engineering Vi, eds. Schrefler B., Onate E., Papadrakakis M., Int Center Numerical Methods Engineering, 2015, 921–929  isi
    7. Kabanikhin S., Hasanov A., Marinin I., Krivorotko O., Khidasheli D., “A Variational Approach to Reconstruction of an Initial Tsunami Source Perturbation”, Appl. Numer. Math., 83 (2014), 22–37  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:777
    Full-text PDF :335
    References:92
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025