Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2012, Volume 15, Number 4, Pages 90–101 (Mi sjim755)  

This article is cited in 7 scientific papers (total in 7 papers)

A numerical method for solving the Dirichlet problem for the wave equation

S. I. Kabanikhina, O. I. Krivorot'kob

a Institute of Computational Mathematics and Mathematical Geophysics (Computing Center), Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
b Novosibirsk State University, Novosibirsk, Russia
References:
Abstract: A numerical method for solving the Dirichlet problem for the wave equation in the two-dimensional space is constructed. An analysis of the ill-posedness of the problem is carried out and a reguralization algorthm is constructed. The first step in the regularization of the problem consists in expansion in a Forier series with respect to one of the variables and passage to a finite sequence of Dirichlet problems for the wave equation in the one-dimensional space. Each of the Dirichlet problems obtained for the wave equation in the one-dimensional space is reduced to the inverse problem $Aq=f$ to some direct (correct) problem. We accomplish an analysis of the ill-posedness degree of the inverse problem on the basis of the study of the nature of the decay of the singular values of $A$ and its discrete analog $A_{mn}$. For relatively small values $m$ and $n$, we develop a numerical algorithm for constructing $r$-solutions to the inverse problem. For the general case, we apply an optimization method for solving the inverse problem. The results of numerical calculations are given.
Keywords: Dirichlet problem, wave equation, ill-posedness degree, singular value decomposition.
Received: 18.06.2012
English version:
Journal of Applied and Industrial Mathematics, 2013, Volume 7, Issue 2, Pages 187–198
DOI: https://doi.org/10.1134/S1990478913020075
Bibliographic databases:
Document Type: Article
UDC: 517.9+519.6
Language: Russian
Citation: S. I. Kabanikhin, O. I. Krivorot'ko, “A numerical method for solving the Dirichlet problem for the wave equation”, Sib. Zh. Ind. Mat., 15:4 (2012), 90–101; J. Appl. Industr. Math., 7:2 (2013), 187–198
Citation in format AMSBIB
\Bibitem{KabKri12}
\by S.~I.~Kabanikhin, O.~I.~Krivorot'ko
\paper A numerical method for solving the Dirichlet problem for the wave equation
\jour Sib. Zh. Ind. Mat.
\yr 2012
\vol 15
\issue 4
\pages 90--101
\mathnet{http://mi.mathnet.ru/sjim755}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3112602}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 2
\pages 187--198
\crossref{https://doi.org/10.1134/S1990478913020075}
Linking options:
  • https://www.mathnet.ru/eng/sjim755
  • https://www.mathnet.ru/eng/sjim/v15/i4/p90
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:740
    Full-text PDF :320
    References:84
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024