Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2012, Volume 15, Number 3, Pages 16–23 (Mi sjim735)  

This article is cited in 11 scientific papers (total in 11 papers)

An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a viscoelastic medium

E. S. Baranovskiĭ

Voronezh State University, Voronezh, Russia
References:
Abstract: We consider an inhomogeneous Dirichlet problem for the stationary equations of the motion of a viscoelastic medium of the Jeffreys type. We prove the solvability of this problem in a generalized (weak) formulation and establish the sequential weak closedness of the solution set.
Keywords: non-Newtonian fluid dynamics, Jeffreys model, viscoelastic medium, inhomogeneous boundary value problems, weak solution.
Received: 26.12.2011
English version:
Journal of Applied and Industrial Mathematics, 2013, Volume 7, Issue 1, Pages 22–28
DOI: https://doi.org/10.1134/S1990478913010031
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: E. S. Baranovskiǐ, “An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a viscoelastic medium”, Sib. Zh. Ind. Mat., 15:3 (2012), 16–23; J. Appl. Industr. Math., 7:1 (2013), 22–28
Citation in format AMSBIB
\Bibitem{Bar12}
\by E.~S.~Baranovski{\v\i}
\paper An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a~viscoelastic medium
\jour Sib. Zh. Ind. Mat.
\yr 2012
\vol 15
\issue 3
\pages 16--23
\mathnet{http://mi.mathnet.ru/sjim735}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3098805}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 1
\pages 22--28
\crossref{https://doi.org/10.1134/S1990478913010031}
Linking options:
  • https://www.mathnet.ru/eng/sjim735
  • https://www.mathnet.ru/eng/sjim/v15/i3/p16
  • This publication is cited in the following 11 articles:
    1. M. Lamine, S. Aniss, A. Hifdi, Lecture Notes in Mechanical Engineering, Advances in Mechanics, 2024, 128  crossref
    2. Asha S. Kotnurkar, Joonabi Beleri, Irfan Anjum Badruddin, Khaleed H.M.T., Sarfaraz Kamangar, Nandalur Ameer Ahammad, “Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel”, Mathematics, 10:10 (2022), 1701  crossref
    3. E. S. Baranovskii, M. A. Artemov, “Global existence results for Oldroyd fluids with wall slip”, Acta Appl. Math., 147:1 (2017), 197–210  crossref  mathscinet  zmath  isi  scopus
    4. M. A. Artemov, G. G. Berdzenishvili, “Global well-posedness for a 2-D viscoelastic fluid model”, Appl. Math. Sci., 10:54 (2016), 2661–2670  crossref  elib  scopus
    5. M. A. Artemov, E. S. Baranovskii, “Mixed boundary-value problems for motion equations of a viscoelastic medium”, Electronic Journal of Differential Equations, 2015:252 (2015), 1–9  scopus
    6. Artemov M.A., Baranovskii E.S., “Mixed Boundary-Value Problems For Motion Equations of a Viscoelastic Medium”, Electron. J. Differ. Equ., 2015, 252  zmath  isi  elib
    7. E. S. Baranovskii, “An optimal control problem for a stationary flow of a Jeffreys medium with slip boundary condition”, J. Appl. Industr. Math., 8:2 (2014), 168–176  mathnet  crossref  mathscinet  isi
    8. E. S. Baranovskii, “On steady motion of viscoelastic fluid of Oldroyd type”, Sb. Math., 205:6 (2014), 763–776  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. E. A. Lyzhnik, “Effektivnye otsenki reshenii uravnenii dvizheniya vyazkouprugoi zhidkosti”, Mezhdunarodnyi zhurnal prikladnykh i fundamentalnykh issledovanii, 2014, no. 8, 150–151 http://www.rae.ru/upfs/?section=content&op=show_article&article_id=5737  elib
    10. M. A. Artemov, E. S. Baranovskii, “O globalnoi razreshimosti nachalno-kraevykh zadach dlya uravneniya dvizheniya vyazkouprugoi sredy”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov VII mezhdunarodnoi konferentsii PMTUKT-2014, Nauchnaya kniga, Voronezh, 2014, 5–8
    11. A. V. Kozlova, “Ob odnom prilozhenii integro-differentsialnykh uravnenii Volterra”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov VII mezhdunarodnoi konferentsii PMTUKT-2014, Nauchnaya kniga, Voronezh, 2014, 198–199
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:1005
    Full-text PDF :300
    References:149
    First page:154
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025