Abstract:
We consider an inhomogeneous Dirichlet problem for the stationary equations of the motion of a viscoelastic medium of the Jeffreys type. We prove the solvability of this problem in a generalized (weak) formulation and establish the sequential weak closedness of the solution set.
Citation:
E. S. Baranovskiǐ, “An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a viscoelastic medium”, Sib. Zh. Ind. Mat., 15:3 (2012), 16–23; J. Appl. Industr. Math., 7:1 (2013), 22–28
\Bibitem{Bar12}
\by E.~S.~Baranovski{\v\i}
\paper An inhomogeneous boundary value problem for the stationary equations of the Jeffreys model for the motion of a~viscoelastic medium
\jour Sib. Zh. Ind. Mat.
\yr 2012
\vol 15
\issue 3
\pages 16--23
\mathnet{http://mi.mathnet.ru/sjim735}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3098805}
\transl
\jour J. Appl. Industr. Math.
\yr 2013
\vol 7
\issue 1
\pages 22--28
\crossref{https://doi.org/10.1134/S1990478913010031}
Linking options:
https://www.mathnet.ru/eng/sjim735
https://www.mathnet.ru/eng/sjim/v15/i3/p16
This publication is cited in the following 11 articles:
M. Lamine, S. Aniss, A. Hifdi, Lecture Notes in Mechanical Engineering, Advances in Mechanics, 2024, 128
Asha S. Kotnurkar, Joonabi Beleri, Irfan Anjum Badruddin, Khaleed H.M.T., Sarfaraz Kamangar, Nandalur Ameer Ahammad, “Effect of Thermal Radiation and Double-Diffusion Convective Peristaltic Flow of a Magneto-Jeffrey Nanofluid through a Flexible Channel”, Mathematics, 10:10 (2022), 1701
E. S. Baranovskii, M. A. Artemov, “Global existence results for Oldroyd fluids with wall slip”, Acta Appl. Math., 147:1 (2017), 197–210
M. A. Artemov, G. G. Berdzenishvili, “Global well-posedness for a 2-D viscoelastic fluid model”, Appl. Math. Sci., 10:54 (2016), 2661–2670
M. A. Artemov, E. S. Baranovskii, “Mixed boundary-value problems for motion equations of a viscoelastic medium”, Electronic Journal of Differential Equations, 2015:252 (2015), 1–9
Artemov M.A., Baranovskii E.S., “Mixed Boundary-Value Problems For Motion Equations of a Viscoelastic Medium”, Electron. J. Differ. Equ., 2015, 252
E. S. Baranovskii, “An optimal control problem for a stationary flow of a Jeffreys medium with slip boundary condition”, J. Appl. Industr. Math., 8:2 (2014), 168–176
E. S. Baranovskii, “On steady motion of viscoelastic fluid of Oldroyd type”, Sb. Math., 205:6 (2014), 763–776
M. A. Artemov, E. S. Baranovskii, “O globalnoi razreshimosti nachalno-kraevykh zadach dlya uravneniya dvizheniya vyazkouprugoi sredy”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov VII mezhdunarodnoi konferentsii PMTUKT-2014, Nauchnaya kniga, Voronezh, 2014, 5–8
A. V. Kozlova, “Ob odnom prilozhenii integro-differentsialnykh uravnenii Volterra”, Sovremennye metody prikladnoi matematiki, teorii upravleniya i kompyuternykh tekhnologii, Sbornik trudov VII mezhdunarodnoi konferentsii PMTUKT-2014, Nauchnaya kniga, Voronezh, 2014, 198–199