Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2011, Volume 14, Number 1, Pages 102–113 (Mi sjim655)  

This article is cited in 1 scientific paper (total in 1 paper)

Sufficient optimality conditions in the form of the Pontryagin maximum principle in control problems for hybrid systems

S. P. Sorokin

Institute of Systems Dynamics and Control Theory SB RAS, Irkutsk, RUSSIA
Full-text PDF (281 kB) Citations (1)
References:
Abstract: We generalize the sufficient conditions of the classical optimality theory to a class of optimal control problems for hybrid systems. For the cases of global and strong local extrema we obtain general sufficient optimality conditions and sufficient conditions in the form of the Pontryagin maximum principle. All results rest on dealing with exterior approximations of the attainability sets of controlled systems which are constructed using the solution sets to one of the Hamilton–Jacobi inequalities (strongly monotone functions of Lyapunov type).
Keywords: Hamilton–Jacobi inequality, sufficient optimality conditions, maximum principle, hybrid system.
Received: 14.08.2009
Revised: 07.12.2010
Bibliographic databases:
Document Type: Article
UDC: 517.977.5
Language: Russian
Citation: S. P. Sorokin, “Sufficient optimality conditions in the form of the Pontryagin maximum principle in control problems for hybrid systems”, Sib. Zh. Ind. Mat., 14:1 (2011), 102–113
Citation in format AMSBIB
\Bibitem{Sor11}
\by S.~P.~Sorokin
\paper Sufficient optimality conditions in the form of the Pontryagin maximum principle in control problems for hybrid systems
\jour Sib. Zh. Ind. Mat.
\yr 2011
\vol 14
\issue 1
\pages 102--113
\mathnet{http://mi.mathnet.ru/sjim655}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2951448}
Linking options:
  • https://www.mathnet.ru/eng/sjim655
  • https://www.mathnet.ru/eng/sjim/v14/i1/p102
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024