Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2010, Volume 13, Number 2, Pages 69–78 (Mi sjim610)  

This article is cited in 11 scientific papers (total in 11 papers)

The $C^1$-approximation of the level surfaces of functions defined on irregular meshes

V. A. Klyachin, E. A. Pabat

Volgograd State University, Volgograd
References:
Abstract: We consider the problem of interpolating the level surfaces of functions in some classes (Lipschitz functions, continuously differentiable functions, functions whose gradient satisfies the Hölder condition, and twice continuously differentiable functions) given their values at the nodes of irregular meshes. We derive geometric conditions on the triangulations of a sequence of finite collections of points which guarantee that the gradients of piecewise linear approximations converge. We illustrate the sharpness of these conditions with Schwartz's example. We propose a method for approximating level surfaces which guarantees $C^1$-convergence without any restrictions on the location of nodes.
Keywords: triangulation, approximation of the gradient, level surface, Voronoi diagram.
Received: 10.03.2009
Revised: 05.03.2010
Bibliographic databases:
Document Type: Article
UDC: 517.518.85+517.27
Language: Russian
Citation: V. A. Klyachin, E. A. Pabat, “The $C^1$-approximation of the level surfaces of functions defined on irregular meshes”, Sib. Zh. Ind. Mat., 13:2 (2010), 69–78
Citation in format AMSBIB
\Bibitem{KlyPab10}
\by V.~A.~Klyachin, E.~A.~Pabat
\paper The $C^1$-approximation of the level surfaces of functions defined on irregular meshes
\jour Sib. Zh. Ind. Mat.
\yr 2010
\vol 13
\issue 2
\pages 69--78
\mathnet{http://mi.mathnet.ru/sjim610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2839600}
Linking options:
  • https://www.mathnet.ru/eng/sjim610
  • https://www.mathnet.ru/eng/sjim/v13/i2/p69
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:692
    Full-text PDF :157
    References:62
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024