Loading [MathJax]/jax/output/CommonHTML/jax.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2010, Volume 13, Number 2, Pages 69–78 (Mi sjim610)  

This article is cited in 11 scientific papers (total in 11 papers)

The C1-approximation of the level surfaces of functions defined on irregular meshes

V. A. Klyachin, E. A. Pabat

Volgograd State University, Volgograd
References:
Abstract: We consider the problem of interpolating the level surfaces of functions in some classes (Lipschitz functions, continuously differentiable functions, functions whose gradient satisfies the Hölder condition, and twice continuously differentiable functions) given their values at the nodes of irregular meshes. We derive geometric conditions on the triangulations of a sequence of finite collections of points which guarantee that the gradients of piecewise linear approximations converge. We illustrate the sharpness of these conditions with Schwartz's example. We propose a method for approximating level surfaces which guarantees C1-convergence without any restrictions on the location of nodes.
Keywords: triangulation, approximation of the gradient, level surface, Voronoi diagram.
Received: 10.03.2009
Revised: 05.03.2010
Bibliographic databases:
Document Type: Article
UDC: 517.518.85+517.27
Language: Russian
Citation: V. A. Klyachin, E. A. Pabat, “The C1-approximation of the level surfaces of functions defined on irregular meshes”, Sib. Zh. Ind. Mat., 13:2 (2010), 69–78
Citation in format AMSBIB
\Bibitem{KlyPab10}
\by V.~A.~Klyachin, E.~A.~Pabat
\paper The $C^1$-approximation of the level surfaces of functions defined on irregular meshes
\jour Sib. Zh. Ind. Mat.
\yr 2010
\vol 13
\issue 2
\pages 69--78
\mathnet{http://mi.mathnet.ru/sjim610}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2839600}
Linking options:
  • https://www.mathnet.ru/eng/sjim610
  • https://www.mathnet.ru/eng/sjim/v13/i2/p69
  • This publication is cited in the following 11 articles:
    1. A. A. Klyachin, “Otsenka pogreshnosti vychisleniya funktsionala, soderzhaschego proizvodnye vtorogo poryadka, na treugolnoi setke”, Sib. elektron. matem. izv., 16 (2019), 1856–1867  mathnet  crossref
    2. V. A. Klyachin, D. V. Shurkaeva, “Koeffitsient izoperimetrichnosti simpleksa v zadache approksimatsii proizvodnykh”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 15:2 (2015), 151–160  mathnet  crossref  elib
    3. A. A. Klyachin, “On the uniform convergence of piecewise linear solutions to the equilibrium capillary surface equation”, J. Appl. Industr. Math., 9:3 (2015), 381–391  mathnet  crossref  crossref  mathscinet  elib
    4. A. A. Klyachin, “Otsenka pogreshnosti vychisleniya integralnykh funktsionalov s pomoschyu kusochno-lineinykh funktsii”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2015, no. 1(26), 6–12  mathnet  crossref
    5. V. A. Klyachin, E. G. Grigoreva, “Chislennoe issledovanie ustoichivosti ravnovesnykh poverkhnostei s ispolzovaniem paketa NumPy”, Vestn. Volgogr. gos. un-ta. Ser. 1, Mat. Fiz., 2015, no. 2(27), 17–30  mathnet  crossref
    6. V. A. Klyachin, “Ekstremalnye svoistva triangulyatsii, osnovannoi na uslovii pustogo vypuklogo mnozhestva”, Sib. elektron. matem. izv., 12 (2015), 991–997  mathnet  crossref
    7. V. A. Klyachin, “Optimizatsiya postroeniya raschetnoi setki dlya resheniya zadachi lokalnogo kriovozdeistviya s ispolzovaniem mnogomernogo geometricheskogo kheshirovaniya na osnove paketa NumPy”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:3 (2014), 355–362  mathnet  crossref  elib
    8. V. A. Klyachin, A. A. Shirokii, “The Delaunay triangulation for multidimensional surfaces and its approximative properties”, Russian Math. (Iz. VUZ), 56:1 (2012), 27–34  mathnet  crossref  mathscinet
    9. V. A. Klyachin, “On a multidimensional analogue of the Schwarz example”, Izv. Math., 76:4 (2012), 681–687  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    10. Boluchevskaya A.V., “C1-approksimatsiya reshenii ellipticheskikh sistem kusochno-gladkimi otobrazheniyami”, Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1: Matematika. Fizika, 2011, no. 2, 4–16  elib  elib
    11. A. V. Boluchevskaya, “Gladkaya approksimatsiya reshenii ellipticheskikh sistem”, Vestn. SamGU. Estestvennonauchn. ser., 2011, no. 8(89), 21–28  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:722
    Full-text PDF :175
    References:76
    First page:11
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025