Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2010, Volume 13, Number 1, Pages 59–71 (Mi sjim596)  

This article is cited in 14 scientific papers (total in 14 papers)

A quantitative measure of compactness and similarity in competitive space

N. G. Zagoruĭko, I. A. Borisova, V. V. Dyubanov, O. A. Kutnenko

Sobolev Institute of Mathematics, SB RAS, Novosibirsk
References:
Abstract: We describe similarity measures among objects in metric and competitive spaces. We propose a competitive similarity function as a similarity measure used in classification and pattern recognition problems. This function enables us to construct some efficient algorithms for solving all main data mining problems, to obtain quantitative estimates for the compactness of images and the informativeness of trait spaces, and to construct easily interpretable decision rules. The method applies to problems with arbitrary numbers of images and characters of their distributions, and can also be used for solving poorly conditioned problems.
Keywords: similarity measure, pattern recognition, compactness, informativeness.
Received: 09.04.2009
English version:
Journal of Applied and Industrial Mathematics, 2011, Volume 5, Issue 1, Pages 144–154
DOI: https://doi.org/10.1134/S1990478911010157
Document Type: Article
UDC: 519.95
Language: Russian
Citation: N. G. Zagoruǐko, I. A. Borisova, V. V. Dyubanov, O. A. Kutnenko, “A quantitative measure of compactness and similarity in competitive space”, Sib. Zh. Ind. Mat., 13:1 (2010), 59–71; J. Appl. Industr. Math., 5:1 (2011), 144–154
Citation in format AMSBIB
\Bibitem{ZagBorDyu10}
\by N.~G.~Zagoru{\v\i}ko, I.~A.~Borisova, V.~V.~Dyubanov, O.~A.~Kutnenko
\paper A~quantitative measure of compactness and similarity in competitive space
\jour Sib. Zh. Ind. Mat.
\yr 2010
\vol 13
\issue 1
\pages 59--71
\mathnet{http://mi.mathnet.ru/sjim596}
\transl
\jour J. Appl. Industr. Math.
\yr 2011
\vol 5
\issue 1
\pages 144--154
\crossref{https://doi.org/10.1134/S1990478911010157}
Linking options:
  • https://www.mathnet.ru/eng/sjim596
  • https://www.mathnet.ru/eng/sjim/v13/i1/p59
  • This publication is cited in the following 14 articles:
    1. O. A. Kutnenko, “Vychislitelnaya slozhnost dvukh zadach kognitivnogo analiza dannykh”, Diskretn. analiz i issled. oper., 29:1 (2022), 18–32  mathnet  crossref  mathscinet
    2. O. A. Kutnenko, “Computational Complexity of Two Problems of Cognitive Data Analysis”, J. Appl. Ind. Math., 16:1 (2022), 89  crossref
    3. O. A. Kutnenko, A. V. Plyasunov, “NP-hardness of some data cleaning problem”, J. Appl. Industr. Math., 15:2 (2021), 285–291  mathnet  crossref  crossref
    4. R. P. Bohush, S. V. Ablameyko, E. R. Adamovskiy, D. Savca, “Image Similarity Estimation Based on Ratio and Distance Calculation between Features”, Pattern Recognit. Image Anal., 30:2 (2020), 147  crossref
    5. Ignatyev A.N., Mirzaev I A., “Selection of Features Into the Object'S Own Space Based on the Measure of Its Compactness”, Int. J. Geotech. Earthq., 2019, no. 49, 55–62  crossref  isi  scopus
    6. Gritsay A.S., Makarov V.V., Khamitov R.N., Tatevosyan A.A., Gritsay S.N., “The Method of Short-Term Forecast Electricity Load With Combined a Sinusoidal Function and An Artificial Neural Network”, Proceedings of the 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (Eiconrus), IEEE Nw Russia Young Researchers in Electrical and Electronic Engineering Conference, IEEE, 2019, 523–526  isi
    7. Aleksandr S. Gritsay, Vladimir V. Makarov, Rustam N. Khamitov, Andrey A. Tatevosyan, Sergey N. Gritsay, 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), 2019, 523  crossref
    8. Potapov V., Khamitov R., Makarov V., Gritsay A., Florensov A., Tyunkov D., 2018 12Th International IEEE Scientific and Technical Conference on Dynamics of Systems, Mechanisms and Machines (Dynamics), Dynamics of Systems Mechanisms and Machines, ed. Kosykh A., IEEE, 2018  isi
    9. Viktor Potapov, Rustam Khamitov, Vladimir Makarov, Aleksandr Gritsay, Aleksandr Florensov, Denis Tyunkov, 2018 Dynamics of Systems, Mechanisms and Machines (Dynamics), 2018, 1  crossref
    10. Alyamkin S.A., Nikolenko N.A., Pavlovskiy E.N., Dyubanov V.V., “Fris-Censoring of Reference Sample in Face Recognition Task By Deep Neural Networks”, 2017 Siberian Symposium on Data Science and Engineering (Ssdse), IEEE, 2017, 41–43  crossref  isi
    11. Maria A. Ivanchuk, Igor V. Malyk, “Building Expert Medical Prognostic Systems Using Voronoi Diagram”, International Journal of Computational Mathematics, 2015 (2015), 1  crossref
    12. Zagoruiko N.G., Kutnenko O.A., “Tsenzurirovanie obuchayuschei vyborki”, Vestnik tomskogo gosudarstvennogo universiteta. upravlenie, vychislitelnaya tekhnika i informatika, 2013, no. 1, 66–73  elib
    13. Volchenko E.V., “Klassifikatsiya ob'ektov v adaptivnykh sistemakh raspoznavaniya na osnove funktsii vzveshennogo konkurentnogo skhodstva”, Vestnik natsionalnogo tekhnicheskogo universiteta kharkovskii politekhnicheskii institut. seriya: informatika i modelirovanie, 2012, no. 62, 18–25 Objects classification based on the function of rival similarity in adaptive recognition systems  elib
    14. S. N. Ganebnykh, M. M. Lange, D. Yu. Stepanov, “Metric classifier using multilevel network of templates”, Pattern Recognit. Image Anal., 22:2 (2012), 265  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:955
    Full-text PDF :334
    References:100
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025