Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2010, Volume 13, Number 1, Pages 34–45 (Mi sjim593)  

On a numerical method for solving the Cauchy problem for an operator differential equation

P. V. Vinogradova

Far-Eastern State University of Transportation, Khabarovsk
References:
Abstract: We study a projection-difference method for solving the Cauchy problem for an operator differential equation in a Hilbert space with the principal selfadjoint operator $A(t)$ and the subordinate linear operator $K(t)$. For approximation equations constructed with the Faedo–Galerkin method we discretize with respect to time using the Crank–Nicolson scheme. We estimate the errors of approximate solutions and the errors for fractional powers of the principal operator $A(t)$. We apply the method to solving an initial boundary value problem.
Received: 04.05.2009
Bibliographic databases:
Document Type: Article
UDC: 517.988.8
Language: Russian
Citation: P. V. Vinogradova, “On a numerical method for solving the Cauchy problem for an operator differential equation”, Sib. Zh. Ind. Mat., 13:1 (2010), 34–45
Citation in format AMSBIB
\Bibitem{Vin10}
\by P.~V.~Vinogradova
\paper On a~numerical method for solving the Cauchy problem for an operator differential equation
\jour Sib. Zh. Ind. Mat.
\yr 2010
\vol 13
\issue 1
\pages 34--45
\mathnet{http://mi.mathnet.ru/sjim593}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2839584}
Linking options:
  • https://www.mathnet.ru/eng/sjim593
  • https://www.mathnet.ru/eng/sjim/v13/i1/p34
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024