Loading [MathJax]/jax/output/SVG/config.js
Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2009, Volume 12, Number 4, Pages 92–105 (Mi sjim585)  

This article is cited in 36 scientific papers (total in 36 papers)

Rigid Switching on in the Contact Problem for Elastic Plates

N. V. Neustroeva

Institute of Mathematics and Informatics, Yakutsk State University, Yakutsk
References:
Abstract: We consider a family of problems describing the contact of elastic plates located at a fixed angle to each other and, in the natural state, touching along a line. The plates are subjected only to bending. We study passage to the limit from elastic switching on to rigid switching on. We show that the limiting problems describe exactly the contact of an elastic plate with a rigid bar and the problem of the equilibrium of an elastic plate with rigid switching on. We establish the solvability of the problems, find the boundary conditions holding on the possible contact set and their precise interpretation.
Keywords: Kirghoff–Lyav model, contact problem, rigid switching on.
Received: 27.02.2009
English version:
Journal of Applied and Industrial Mathematics, 2010, Volume 4, Issue 4, Pages 526–538
DOI: https://doi.org/10.1134/S1990478910040071
Bibliographic databases:
UDC: 517.95
Language: Russian
Citation: N. V. Neustroeva, “Rigid Switching on in the Contact Problem for Elastic Plates”, Sib. Zh. Ind. Mat., 12:4 (2009), 92–105; J. Appl. Industr. Math., 4:4 (2010), 526–538
Citation in format AMSBIB
\Bibitem{Neu09}
\by N.~V.~Neustroeva
\paper Rigid Switching on in the Contact Problem for Elastic Plates
\jour Sib. Zh. Ind. Mat.
\yr 2009
\vol 12
\issue 4
\pages 92--105
\mathnet{http://mi.mathnet.ru/sjim585}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668813}
\transl
\jour J. Appl. Industr. Math.
\yr 2010
\vol 4
\issue 4
\pages 526--538
\crossref{https://doi.org/10.1134/S1990478910040071}
Linking options:
  • https://www.mathnet.ru/eng/sjim585
  • https://www.mathnet.ru/eng/sjim/v12/i4/p92
  • This publication is cited in the following 36 articles:
    1. N. A. Nikolaeva, “Plastina Kirkhgofa — Lyava s ploskim zhestkim vklyucheniem”, Chelyab. fiz.-matem. zhurn., 8:1 (2023), 29–46  mathnet  crossref
    2. N. P. Lazarev, V. A. Kovtunenko, “Asymptotic analysis of the problem of equilibrium of an inhomogeneous body with hinged rigid inclusions of various widths”, J. Appl. Mech. Tech. Phys., 64:5 (2024), 911–920  mathnet  mathnet  crossref  crossref
    3. Lazarev N., “Inverse Problem For Cracked Inhomogeneous Kirchhoff-Love Plate With Two Hinged Rigid Inclusions”, Bound. Value Probl., 2021:1 (2021), 88  crossref  mathscinet  isi  scopus
    4. Lazarev N.P. Semenova G.M. Romanova N.A., “On a Limiting Passage as the Thickness of a Rigid Inclusions in An Equilibrium Problem For a Kirchhoff Love Plate With a Crack”, J. Sib. Fed. Univ.-Math. Phys., 14:1 (2021), 28–41  mathnet  crossref  mathscinet  isi  scopus
    5. Lazarev N. Romanova N. Semenova G., “Optimal Location of a Thin Rigid Inclusion For a Problem Describing Equilibrium of a Composite Timoshenko Plate With a Crack”, J. Inequal. Appl., 2020:1 (2020), 29  crossref  mathscinet  isi  scopus
    6. Furtsev A.I., “the Unilateral Contact Problem For a Timoshenko Plate and a Thin Elastic Obstacle”, Sib. Electron. Math. Rep., 17 (2020), 364–379  mathnet  crossref  mathscinet  zmath  isi  scopus
    7. Fankina V I., “on the Equilibrium Problem For a Two-Layer Structure With the Upper Layer Covering a Defect Tip”, Sib. Electron. Math. Rep., 17 (2020), 141–160  mathnet  crossref  mathscinet  zmath  isi  scopus
    8. N. P. Lazarev, G. M. Semenova, “Optimal control of the location of a thin rigid inclusion in the equilibrium problem of an inhomogeneous two-dimensional body with a crack”, J. Appl. Industr. Math., 13:1 (2019), 76–84  mathnet  crossref  crossref  elib
    9. A. I. Furtsev, “A contact problem for a plate and a beam in presence of adhesion”, J. Appl. Industr. Math., 13:2 (2019), 208–218  mathnet  crossref  crossref  elib
    10. N. A. Nikolaeva, “On equilibrium of the elastic bodies with cracks crossing thin inclusions”, J. Appl. Industr. Math., 13:4 (2019), 685–697  mathnet  crossref  crossref
    11. I. V. Frankina, “On the equilibrium of a two-layer elastic structure with a crack”, J. Appl. Industr. Math., 13:4 (2019), 629–641  mathnet  crossref  crossref
    12. Lazarev N.P. Everstov V.V. Romanova N.A., “Fictitious Domain Method For Equilibrium Problems of the Kirchhoff-Love Plates With Nonpenetration Conditions For Known Configurations of Plate Edges”, J. Sib. Fed. Univ.-Math. Phys., 12:6 (2019), 674–686  mathnet  crossref  mathscinet  isi  scopus
    13. Fankina V I., “The Equilibrium of a Two Layer Structure in the Presence of a Defect”, Sib. Electron. Math. Rep., 16 (2019), 959–974  mathnet  crossref  mathscinet  zmath  isi  scopus
    14. A. I. Furtsev, “On Contact Between a Thin Obstacle and a Plate Containing a Thin Inclusion”, J Math Sci, 237:4 (2019), 530  crossref
    15. A. M. Khludnev, “Equilibrium of an elastic body with closely spaced thin inclusions”, Comput. Math. Math. Phys., 58:10 (2018), 1660–1672  mathnet  crossref  crossref  isi  elib
    16. Lazarev N.P., Popova T.S., Rogerson G.A., “Optimal Control of the Radius of a Rigid Circular Inclusion in Inhomogeneous Two-Dimensional Bodies With Cracks”, Z. Angew. Math. Phys., 69:3 (2018), 53  crossref  mathscinet  zmath  isi  scopus
    17. A. M. Khludnev, “Asymptotics of anisotropic weakly curved inclusions in an elastic body”, J. Appl. Industr. Math., 11:1 (2017), 88–98  mathnet  crossref  crossref  mathscinet  elib
    18. Khludnev A.M., Popova T.S., “Timoshenko Inclusions in Elastic Bodies Crossing An External Boundary At Zero Angle”, Acta Mech. Solida Sin., 30:3 (2017), 327–333  crossref  mathscinet  isi  scopus
    19. I. V. Frankina, “A contact problem for an elastic plate with a thin rigid inclusion”, J. Appl. Industr. Math., 10:3 (2016), 333–340  mathnet  crossref  crossref  mathscinet  elib
    20. N. P. Lazarev, “Optimal control of the size of rigid inclusion in equilibrium problem for inhomogeneous Timoshenko-type plate with crack”, J. Math. Sci., 228:4 (2018), 409–420  mathnet  crossref  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:524
    Full-text PDF :177
    References:75
    First page:4
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025