Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2009, Volume 12, Number 4, Pages 44–50 (Mi sjim581)  

This article is cited in 3 scientific papers (total in 3 papers)

The Wiener Index for Graphs of Arbitrary Girth and Their Edge Graphs

A. A. Dobrynin

Sobolev Institute of Mathematics, SB RAS, Novosibirsk
Full-text PDF (278 kB) Citations (3)
References:
Abstract: We consider the invariant $W(G)$ (Wiener index) of a simple connected nondirected graph $G$, which is equal to the sum of distances between all pairs of vertices in the natural metric. We show that for every $g\ge5$ there exist planar graphs $G$ with a shortest cycle of length $g$ for which $W(L(G))=W(G)$, where $L(G)$ is the edge graph for $G$.
Keywords: invariant graph, distance in graphs, Wiener index.
Received: 19.02.2009
English version:
Journal of Applied and Industrial Mathematics, 2010, Volume 4, Issue 4, Pages 505–511
DOI: https://doi.org/10.1134/S1990478910040058
Bibliographic databases:
UDC: 519.17
Language: Russian
Citation: A. A. Dobrynin, “The Wiener Index for Graphs of Arbitrary Girth and Their Edge Graphs”, Sib. Zh. Ind. Mat., 12:4 (2009), 44–50; J. Appl. Industr. Math., 4:4 (2010), 505–511
Citation in format AMSBIB
\Bibitem{Dob09}
\by A.~A.~Dobrynin
\paper The Wiener Index for Graphs of Arbitrary Girth and Their Edge Graphs
\jour Sib. Zh. Ind. Mat.
\yr 2009
\vol 12
\issue 4
\pages 44--50
\mathnet{http://mi.mathnet.ru/sjim581}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668810}
\transl
\jour J. Appl. Industr. Math.
\yr 2010
\vol 4
\issue 4
\pages 505--511
\crossref{https://doi.org/10.1134/S1990478910040058}
Linking options:
  • https://www.mathnet.ru/eng/sjim581
  • https://www.mathnet.ru/eng/sjim/v12/i4/p44
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024