Abstract:
In order to solve the boundary value problems by the method of decomposing the computation region $G$ into subregions without overlapping and with the Dirichlet–Dirichlet type conditions, the Poincaré–Steklov operator equation on the junction boundary $\gamma$ of the subregions, which involves the difference of the normal derivatives of the solutions on the opposite sides of $\gamma$, is approximated by using the discrete Green's functions. Basing on this, we construct some direct and iterative decomposition methods which are parallel in nature. Sample computations show the precision and convergence of the proposed algorithms.
Keywords:
boundary value problem, method for decomposing a region, Poincaré–Steklov equation, quasistructured mesh, discrete Green's function.
Citation:
V. M. Sveshnikov, “Construction of Direct and Iterative Decomposition Methods”, Sib. Zh. Ind. Mat., 12:3 (2009), 99–109; J. Appl. Industr. Math., 4:3 (2010), 431–440
\Bibitem{Sve09}
\by V.~M.~Sveshnikov
\paper Construction of Direct and Iterative Decomposition Methods
\jour Sib. Zh. Ind. Mat.
\yr 2009
\vol 12
\issue 3
\pages 99--109
\mathnet{http://mi.mathnet.ru/sjim571}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668789}
\transl
\jour J. Appl. Industr. Math.
\yr 2010
\vol 4
\issue 3
\pages 431--440
\crossref{https://doi.org/10.1134/S1990478910030166}
Linking options:
https://www.mathnet.ru/eng/sjim571
https://www.mathnet.ru/eng/sjim/v12/i3/p99
This publication is cited in the following 12 articles:
I. A. Klimonov, V. D. Korneev, V. M. Sveshnikov, “Otsenki razbalansirovki zagruzki protsessorov pri rasparallelivanii resheniya 3D kraevykh zadach na kvazistrukturirovannykh setkakh”, Sib. zhurn. vychisl. matem., 27:1 (2024), 61–70
I. A. Klimonov, V. M. Sveshnikov, “Eksperimentalnoe issledovanie nekotorykh reshatelei 3D kraevykh podzadach na regulyarnykh podsetkakh kvazistrukturirovannykh parallelepipedalnykh setok”, Sib. zhurn. vychisl. matem., 25:4 (2022), 429–440
A. N. Kozyrev, V. M. Sveshnikov, “Experimental study of the efficiency of solving 2D boundary value problems on subgrids of quasistructured rectangular grids”, Num. Anal. Appl., 14:3 (2021), 238–248
V. M. Sveshnikov, A. O. Savchenko, A. V. Petukhov, “A new non-overlapping domain decomposition method for the 3-D Laplace exterior problem”, Num. Anal. Appl., 11:4 (2018), 346–358
A. N. Kozyrev, V. M. Sveshnikov, “O postroenii dvumernykh lokalno-modifitsirovannykh kvazistrukturirovannykh setok i reshenii na nikh kraevykh zadach v oblastyakh s krivolineinoi granitsei”, Vestn. YuUrGU. Ser. Vych. matem. inform., 6:2 (2017), 5–21
V. D. Korneev, V. M. Sveshnikov, “Parallel algorithms and domain decomposition technologies for solving three-dimensional boundary value problems on quasi-structured grids”, Num. Anal. Appl., 9:2 (2016), 141–149
V. M. Sveshnikov, B. D. Rybdylov, “O rasparallelivanii resheniya kraevykh zadach na kvazistrukturirovannykh setkakh”, Vestn. YuUrGU. Ser. Vych. matem. inform., 2:3 (2013), 63–72
Sveshnikov V.M., Zalesskii V.G., Petrovich O.N., “Modelirovanie eos s plazmennym emitterom na osnove metoda dekompozitsii raschetnoi oblasti”, Prikladnaya fizika, 2012, no. 2, 40–44
Ilin I.V., “Parallelnye metody i tekhnologii dekompozitsii oblastei”, Vestnik yuzhno-uralskogo gosudarstvennogo universiteta. seriya: vychislitelnaya matematika i informatika, 2012, no. 46, 31–44
Parallel methods and technologies of domain decomposition
V. M. Sveshnikov, D. O. Belyaev, “Postroenie kvazistrukturirovannykh lokalno-modifitsirovannykh setok dlya resheniya zadach silnotochnoi elektroniki”, Vestn. YuUrGU. Ser. Matem. modelirovanie i programmirovanie, 2012, no. 14, 130–140
V. P. Ilin, “Parallelnye metody i tekhnologii dekompozitsii oblastei”, Vestn. YuUrGU. Ser. Vych. matem. inform., 2012, no. 1, 31–44
Sveshnikov V.M., “Parallelnye algoritmy i tekhnologii rascheta intensivnykh puchkov zaryazhennykh chastits na mnogoprotsessornykh superEVM”, Prikladnaya fizika, 2010, no. 3, 56–60