Sibirskii Zhurnal Industrial'noi Matematiki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sib. Zh. Ind. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Zhurnal Industrial'noi Matematiki, 2009, Volume 12, Number 3, Pages 28–40 (Mi sjim565)  

This article is cited in 16 scientific papers (total in 16 papers)

An Inverse Problem for Determining Two Coefficients in an Integrodifferential Wave Equation

D. K. Durdiev

Bukhara State University, Bukhara, Uzbekistan
References:
Abstract: For the equation of wave propagation in the half-space filled with some medium, we consider the problem of determining the wave propagation velocity which depends only on the variable y and the memory functions of the medium. There is a point-like pulse source on the boundary of the half-space. We show that both unknown functions of one variable are uniquely determined by the Fourier image with respect to x of the solution to the direct problem on the boundary of the half-space. We estimate the stability of the solution to the problem.
Keywords: inverse problem, Fourier transform, stability, uniqueness.
Received: 20.11.2008
Bibliographic databases:
UDC: 517.958
Language: Russian
Citation: D. K. Durdiev, “An Inverse Problem for Determining Two Coefficients in an Integrodifferential Wave Equation”, Sib. Zh. Ind. Mat., 12:3 (2009), 28–40
Citation in format AMSBIB
\Bibitem{Dur09}
\by D.~K.~Durdiev
\paper An Inverse Problem for Determining Two Coefficients in an~Integrodifferential Wave Equation
\jour Sib. Zh. Ind. Mat.
\yr 2009
\vol 12
\issue 3
\pages 28--40
\mathnet{http://mi.mathnet.ru/sjim565}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2668144}
Linking options:
  • https://www.mathnet.ru/eng/sjim565
  • https://www.mathnet.ru/eng/sjim/v12/i3/p28
  • This publication is cited in the following 16 articles:
    1. M. R. Tomaev, Zh. D. Totieva, “An inverse two-dimensional problem for determining two unknowns in equation of memory type for a weakly horizontally inhomogeneous medium”, Vladikavk. matem. zhurn., 26:3 (2024), 112–134  mathnet  crossref
    2. Zh. D. Totieva, “Coefficient reconstruction problem for the two-dimensional viscoelasticity equation in a weakly horizontally inhomogeneous medium”, Theoret. and Math. Phys., 213:2 (2022), 1477–1494  mathnet  crossref  crossref  mathscinet  adsnasa
    3. A. A. Rakhmonov, U. D. Durdiev, Z. R. Bozorov, “Problem of determining the speed of sound and the memory of an anisotropic medium”, Theoret. and Math. Phys., 207:1 (2021), 494–513  mathnet  crossref  crossref  adsnasa  isi
    4. Sultanov M.A. Durdiev D.K. Rahmonov A.A., “Construction of An Explicit Solution of a Time-Fractional Multidimensional Differential Equation”, Mathematics, 9:17 (2021), 2052  crossref  isi  scopus
    5. Z. A. Akhmatov, Zh. D. Totieva, “Kvazidvumernaya koeffitsientnaya obratnaya zadacha dlya volnovogo uravneniya v slabo gorizontalno-neodnorodnoi srede s pamyatyu”, Vladikavk. matem. zhurn., 23:4 (2021), 15–27  mathnet  crossref
    6. Durdiev D.K., Totieva Zh.D., “the Problem of Determining the One-Dimensional Kernel of Viscoelasticity Equation With a Source of Explosive Type”, J. Inverse Ill-Posed Probl., 28:1 (2020), 43–52  crossref  mathscinet  zmath  isi  scopus
    7. Zh. D. Totieva, “Odnomernye obratnye koeffitsientnye zadachi anizotropnoi vyazkouprugosti”, Sib. elektron. matem. izv., 16 (2019), 786–811  mathnet  crossref
    8. Zh. D. Totieva, D. K. Durdiev, “The Problem of Finding the One-Dimensional Kernel of the Thermoviscoelasticity Equation”, Math. Notes, 103:1 (2018), 118–132  mathnet  crossref  crossref  mathscinet  isi  elib
    9. Durdiev D.K., Totieva Zh.D., “The Problem of Determining the One-Dimensional Matrix Kernel of the System of Viscoelasticity Equations”, Math. Meth. Appl. Sci., 41:17 (2018), 8019–8032  crossref  mathscinet  zmath  isi
    10. Totieva Zh.D., “The Problem of Determining the Piezoelectric Module of Electroviscoelasticity Equation”, Math. Meth. Appl. Sci., 41:16 (2018), 6409–6421  crossref  mathscinet  zmath  isi  scopus
    11. Zh. D. Totieva, “Zadacha ob opredelenii koeffitsienta teplovogo rasshireniya uravneniya termovyazkouprugosti”, Sib. elektron. matem. izv., 14 (2017), 1108–1119  mathnet  crossref
    12. D. K. Durdiev, Zh. D. Totieva, “The problem of determining the one-dimensional kernel of the electroviscoelasticity equation”, Siberian Math. J., 58:3 (2017), 427–444  mathnet  crossref  crossref  isi  elib  elib
    13. Zh. D. Totieva, “Mnogomernaya zadacha ob opredelenii funktsii plotnosti dlya sistemy uravnenii vyazkouprugosti”, Sib. elektron. matem. izv., 13 (2016), 635–644  mathnet  crossref
    14. Totieva Zh.D., “The Multidimensional Problem of Determining the Density Function For the System of Viscoelasticity”, Sib. Electron. Math. Rep., 13 (2016), 635–644  isi
    15. D. K. Durdiev, Zh. Sh. Safarov, “Inverse Problem of Determining the One-Dimensional Kernel of the Viscoelasticity Equation in a Bounded Domain”, Math. Notes, 97:6 (2015), 867–877  mathnet  crossref  crossref  mathscinet  isi  elib
    16. D. K. Durdiev, Zh. D. Totieva, “Zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matem., 16:2 (2013), 72–82  mathnet  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский журнал индустриальной математики
    Statistics & downloads:
    Abstract page:408
    Full-text PDF :164
    References:49
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025